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ABSTRACT

We consider the problem of parameter estimation from real-valued
multi-tone signals. Such problems arise frequently in spectral esti-
mation. More recently, they have gained new importance in finite-
rate-of-innovation signal sampling and reconstruction. The annihi-
lating filter is a key tool for parameter estimation in these problems.
The standard annihilating filter design has to be modified to result
in accurate estimation when dealing with real sinusoids, particularly
because the real-valued nature of the sinusoids must be factored into
the annihilating filter design. We show that the constraint on the
annihilating filter can be relaxed by making use of the Hilbert trans-
form. We refer to this approach as the Hilbert annihilating filter ap-
proach. We show that accurate parameter estimation is possible by
this approach. In the single-tone case, the mean-square error perfor-
mance increases by 6 dB for signal-to-noise ratio (SNR) greater than
0 dB. We also present experimental results in the multi-tone case,
which show that a significant improvement (about 6 dB) is obtained
when the parameters are close to 0 or π. In the mid-frequency range,
the improvement is about 2 to 3 dB.

Index Terms— Annihilating filter, discrete Hilbert transform,
finite rate of innovation, sampling, spectral estimation.

1. INTRODUCTION

High-resolution spectral estimation (HRSE) is an important prob-
lem that arises in applications such as radio detection and ranging
(RADAR), sound navigation and ranging (SONAR) and communi-
cation systems, etc. [1]. The fundamental goal in HRSE is to ac-
curately estimate the parameters of closely-spaced sinusoids in the
presence of noise with as few measurements as possible. Tech-
niques such as the annihilating filter, multiple signal classification
(MUSIC) [2], and estimation of signal parameters by rotational in-
variance (ESPRIT) [3, 4], have been proposed to solve the problem.
More recently, the HRSE methods gained importance in the context
of a new sampling paradigm, namely, finite-rate-of-innovation (FRI)
sampling first proposed by Vetterli et al. [5], [6]. The FRI sampling
problem is one of sampling and reconstructing parametric signals
(piece-wise polynomial, piece-wise sinusoidal, etc.) from their pro-
jections on to a suitably chosen sampling kernel. These signals have
a finite number of degrees of freedom over a unit interval and do not
fall within Shannon’s sampling framework. Typically, the kernel is
chosen such that the problem of parameter estimation reduces to one
of solving for the parameters of a sum-of-sinusoids signal, which is
the standard HRSE problem. The annihilating filter method, MU-
SIC, and ESPRIT methods have been deployed to solve the FRI
problem. Even though the annihilating filter, in comparison with

ESPRIT and MUSIC, is more susceptible to noise, it requires fewer
number of samples for parameter estimation. This is mainly because
ESPRIT and MUSIC use the autocorrelation matrix, whereas the an-
nihilating filter works directly on the noisy input samples. To ac-
curately estimate the autocorrelation matrix, more number of sam-
ples are required. The standard annihilating filter approach is best
suited for complex sinusoids. In case of real sinusoids, the parame-
ters become mutually dependent, which must be taken into account
in designing the annihilating filter to obtain optimal performance.
Otherwise, there will be a mismatch between the signal model and
the annihilating filter design, which would affect noise performance.
In view of the simplicity and importance of the annihilating filter in
FRI signal sampling, we address the issue of resolving the mismatch
by making use of the Hilbert transform. We would like to add here
that the Hilbert transform is gaining more importance in the context
of FRI problems. Recently, the Hilbert transform was used for pulse
modeling in variable pulse width (VPW) FRI problems [7] for elec-
trocardiogram (ECG) signal modeling and compression. Hao and
Marziliano [8] proposed a FRI ECG model, where the ECG signals
are modeled as sum of bandlimited and nonuniform linear splines.
Condat and Hirabayashi [9] proposed a different approach of sam-
pling and reconstruction of FRI signals, where the FRI signals are
reconstructed by applying maximum-likelihood estimation method.
Kusuma and Goyal [10] derived the Cramér-Rao bounds for param-
eter estimation of FRI signals by posing the FRI based sampling and
reconstruction as powersum-based sampling method. In presence of
noise, the performance of parameter estimation of FRI signals from
its samples can be improved by applying Cadzow denoising method
[11].

1.1. Real versus complex sinusoids

In the standard formulation, the signal model is given as

x̃[n] =

K∑
k=1

ak e
jωkn + εc[n], 0 ≤ n ≤ N − 1, (1)

where εc[n] is additive white complex Gaussian noise. The problem
is one of estimating {ωk}Kk=1 from x̃[n].

In practical spectral estimation problems, one has to deal with
real sinusoids. Also, in case of FRI problems, some practically real-
izable sampling kernels result in a sum of real sinusoids. Thus, the
corresponding real-valued signal model takes the form,

x[n] =

K∑
k=1

ak cos(ωkn) + ε[n], 0 ≤ n ≤ N − 1, (2)
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Fig. 1. Comparison of bias, variance, and MSE on a single-tone signal for both complex as well as real signals; N = 21 and ω1 = 0.3π.
The results are obtained by averaging from 500 independent Monte Carlo realizations.

where ε[n] is white Gaussian noise with zero mean, variance σ2 and
ak is the amplitude of the kth cosinusoid. In (1), the problem is to
estimate K complex sinusoid frequencies, whereas in (2), the goal
is to estimate 2K complex sinusoid frequencies. If we deploy the
standard annihilating filter machinery to solve the problem in (2),
we need to explicitly enforce the constraint that out of the 2K pa-
rameters, K are redundant. Otherwise, there will be a difference in
the mean-square error (MSE) performance depending on what was
input to the annihilating filter. This aspect is illustrated through a
numerical simulation in Figure 1. We observe that the MSE perfor-
mance difference between the real and complex signal cases is nearly
6 dB. Although the bias is nearly identical for SNR greater than 5 dB,
the variance and hence the MSE show a significant difference. This
example also provides convincing evidence that the complex signal
scenario is better for annihilation than the real signal one.

1.2. Prior work in real sinusoid frequency estimation

In the literature, there are broadly two classes of techniques, one
based on discrete Fourier transform (DFT) interpolation and the
other based on HRSE techniques. Macleod [12] noted that, due to
the finite length of the signal there exists spectral leakage from the
negative complex exponential onto the positive complex exponential
and vice versa. He proposed three-point and five-point interpola-
tion algorithms in the DFT domain to remove the effect of spectral
leakage. Mahata and Söderstrom [13] proposed a modification of
ESPRIT, referred to as R-ESPRIT for real sinusoids. The authors
show that the noise free component of the signal lies in a subspace
of dimension K, and thus the signal dimension is reduced from 2K
to K. An FRI based technique was proposed by Bernet et al. [14],
to recover the parameters of a piecewise sinusoidal signal from its
samples using kernels satisfying Strang-Fix [15] conditions. So et
al. [16] proposed iterative methods to estimate the frequencies of
multiple sinusoids by constrained weighted least square estimators.

1.3. Organization of the paper

In Section 2, we briefly review the annihilating filter for complex si-
nusoid parameter estimation. Also in this section, we pose the FRI
sampling technique as a problem of solving for the unknown fre-
quencies from a sum of real multi-tone sinusoids. In Section 3, we
propose a Hilbert transform based technique to transform a signal of
the type given in (2) to that in (1), in order to improve on the estima-
tion accuracy. We refer to the proposed method as the H-annihilating

filter. In Section 4, we make a comparative study of performance of
the annihilating filter and the H-annihilating filter.

2. THE ANNIHILATING FILTER AND PARTIAL FOURIER
SERIES

2.1. Annihilating filter

Consider a signal y[n] that is a sum of K complex exponentials,

y[n] =

K∑
k=1

ak e
jωkn, n = 0, 1, · · · , N − 1.

Consider a finite causal filter h[n], defined over n = 0, 1 · · ·M . The
convolution output z[n], for M ≤ n ≤ N − 1 is,

z[n] = (y ∗ h)[n]

=

K∑
k=1

ake
jωkn

M∑
m=0

h[m]ejωkm

=

K∑
k=1

akH(ωk)e
−jωkn

If H(ωk) is designed to take a value 0, for k = {1, 2, · · · ,K}, then
z[n] = 0 for M ≤ n ≤ N − 1. The transfer function of the filter
h[n] is given by,

H(z) =

K∏
k=1

(1− ejωkz−1).

There are K unknown zeros of h[n], thus M = K. To solve the
system of equations,

K∑
m=0

h[m]y[n−m] = 0,K ≤ n ≤ N − 1

we need at least K equations. This implies that, N − K ≥ K ⇒
N ≥ 2K. Thus, we need at least 2K samples of y[n] to estimate
{ωk}Kk=1.
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2.2. Reconstruction from partial Fourier series

We consider the model proposed by Vetterli et al. [5] and reformulate
it differently to obtain a real-valued multi-tone signal. Consider a τ -
periodic FRI signal having K Dirac impulses in every period,

g(t) =
∑
n∈Z

K∑
k=1

akδ(t− tk − nτ),

where ak and tk are the unknown amplitude and time location of
the kth Dirac impulse. This periodic signal can be expanded using a
trigonometric Fourier series with coefficients c`, b` [17] as,

g(t) = c0 +

∞∑
`=1

c` cos(2π`t/τ) +

∞∑
`=1

b` sin(2π`t/τ).

Now c`, for ` ≥ 1 is given by,

c` =
2

τ

∫ τ

0

g(t) cos(2π`t/τ)dt

=
2

τ

∫ τ

0

K∑
k=1

akδ(t− tk) cos(2π`t/τ)dt

=
2

τ

K∑
k=1

ak cos(2π`tk/τ). (3)

Thus, given the coefficient sequence {c`, 1 ≤ ` ≤ 2K}, the prob-
lem of computing ak and tk fits within the framework of (2). Once
the parameters tk are estimated using the annihilating filter approach
(more specifically, a suitably modified version of it), the parameters
ak can be estimated using a standard linear least-squares approach.
A similar result holds if one were interested in computing the param-
eters based on coefficients b`. Interestingly, the problem of signal
reconstruction from partial Fourier coefficients was also addressed
by Eckhoff [18] and more recently by Batenkov and Yomdin [19].

3. REAL SINUSOID PROBLEM

Using Euler’s formula, (2) is written as,

x[n] =

K∑
k=1

ck e
jωkn + ck e

−jωkn + ε(n) (4)

where ck , ak
2

. In general, the annihilating filter solves for 2K
complex sinusoids in (4). However, K out of the 2K parameters are
redundant, a constraint which must be enforced to enable accurate
reconstruction.

3.1. Proposed method

We propose to use the Hilbert transform to go from a signal model
of the type given in (2) to that given in (1). The Hilbert transform
is a unitary operator that converts cosines to sines and vice versa.
The model given in (1) is actually an analytic signal model. Let
the discrete Hilbert transform operator be denoted by H. Then the
analytic signal x̃[n] is given as

x̃[n] = x[n] + jHx[n]

=

K∑
k=1

ak e
jωkn + εc[n] (5)

(a)

Fig. 2. H-Annihilating filter technique.

Thus, the real sinusoid problem has been transformed to a complex
sinusoid problem. The total number of complex exponentials is re-
duced by a factor of 2. This has an interesting consequence. Maravic
and Vetterli [20] showed that the mean-square error in frequency es-
timation increases with the number of complex exponentials. By re-
ducing the number of complex exponentials, the mean-square error
performance is improved. We show that, by carrying out spectral do-
main calculations the signal-to-noise ratio remains unchanged in the
process of applying the Hilbert transform. Let X(ω), X̃(ω), ε(ω)
denote the Fourier transforms of x[n], x̃[n], and ε[n], respectively.

X(ω) =

K∑
k=1

ak
2
δ(ω − ωk) +

ak
2
δ(ω + ωk) + ε(ω),

X̃(ω) =

{∑K
k=1 akδ(ω − ωk) + 2ε(ω), if ω > 0,

0, if ω < 0.
(6)

The SNR estimated from X(ω) is

SNRX =

∑K
k=1(

ak
2
)2 + (ak

2
)2∫∞

−∞ |ε(ω)|2dω

=

∑K
k=1

a2k
2∫∞

−∞ |ε(ω)|2dω
,

whereas that estimated from X̃(ω) is

SNRX̃ =

∑K
k=1 a

2
k∫∞

0
|2ε(ω)|2dω

=

∑K
k=1 a

2
k

4 ∗ 1
2

∫∞
−∞ |ε(ω)|2dω

,

⇒ SNRX = SNRX̃ .

3.2. Discrete Hilbert transform

The ideal discrete Hilbert transform has the frequency response
H(ω) = −j sgn(ω),−π < ω ≤ π. The corresponding dis-
crete filter impulse response is of infinite duration and is given

by h[n] =
2 sin2(nπ/2)

nπ
, n ∈ Z − {0}, and h[0] = 0. We

designed a (2L + 1)–length Hilbert transform impulse response
using the frequency sampling method [17]. Increasing L improves
the approximation quality to the ideal Hilbert transform behaviour.
However, it comes with an increase in computational complexity for
performing the filtering operation.

The sequence of operations in the proposed method (which
we shall refer to as the H-annihilating filter method) is shown in
Figure 2.
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Fig. 5. Comparison of MSE of annihilating filter and H-annihilating filter on a cosine signal having three tones ω1 = 0.1π, ω2 = 0.3π, ω3 =
0.9π and N = 21.
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Fig. 3. Comparison of MSE of annihilating filter on a single tone
complex exponential signal with ω1 = {0.02π · · · 0.98π}, N = 21
and SNR = 15dB.
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Fig. 4. Comparison of MSE of H-annihilating filter on a single tone
cosine having ω1 = 0.3π for N = 21, 41, and 61.

4. SIMULATION RESULTS

In this section, we present the numerical simulation results to evalu-
ate the performance of the H-annihilating filter method. All the re-
sults were obtained by averaging over 500 independent Monte-Carlo
simulations. As a first illustration, we compare in Figure 3, the MSE
of the frequency estimated by the annihilating filter on a real and
complex sinusoid as the frequency of the sinusoid is changed from
0.02π to 0.98π. The length of the signal, N = 21 and SNR =

15 dB. We observe that the MSE increases for a real sinusoid, when
the frequency is close to 0 and π. This is because, the positive and
negative exponentials are very close to one another when ω1 <

2π
N

or ω1 > (N/2−1) 2π
N

[12]. In comparison to this, there is almost no
change in MSE of the frequency estimated by the annihilating filter
on a complex exponential as the frequency is changed from 0.02π to
0.98π. Thus, we conclude that spectral interference between posi-
tive and negative frequencies is responsible for the poor performance
of the annihilating filter on real sinusoids. In Figure 5, we have com-
pared the performance of the proposed H-annihilating filter and the
standard annihilating filter technique on a real sinusoid containing
three frequencies ω1 = 0.1π, ω2 = 0.3π, ω3 = 0.9π and length of
the signal, N = 21. We note that, a relatively higher improvement
in MSE performance is observed in the H-annihilating filter method
over the annihilating filter method for ω1 and ω3 as compared to
ω2. This is in agreement with observations made from Figure 3.
The improvement observed in the H-annihilating filter method for
ω1 and ω3 is about 6 dB and about 3 dB for ω2 at a SNR of 15 dB.
We see that there is a consistent improvement in performance with
the H-annihilating filter method. In Figure 4, we study the effect
of increasing the length of the input signal to the H-annihilating fil-
ter. There is an improvement of about 6 dB, when the length of the
signal is increased from 21 to 61 at an SNR of 15 dB. Thus, the
mean-square error performance of the filter improves as the length
of the observation sequence is increased.

5. CONCLUSION

We have addressed the issue of frequency estimation of a real-valued
multi-tone signal by annihilating filter. We proposed a modified H-
annihilating filter, which converts the real signal into a complex one
before the annihilating filter is applied. The algorithm is validated
using numerical simulations. Experimental results show that there
is an improvement of about 6 dB in the H-annihilating filter tech-
nique as compared with the annihilating filter technique when the
frequency is not close to 0 or π. At frequencies close to 0 or π the
annihilating filter suffers from severe spectral interference caused by
the closeness of negative and positive complex exponentials. How-
ever, the proposed H-annihilating filter method does not suffer from
such problems. The performance of the proposed method can be fur-
ther improved by applying Cadzow’s denoising method to the output
of H-annihilating filter.
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