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Abstract—In many applications, it is critical to be able to
sample the most informative pixels of an image first; and then
once these pixels are sampled, the highest fidelity image can be
reconstructed. Optimized sampling strategies generally fall into
two categories: static and dynamic. In dynamic sampling, each
new sample is chosen by using information obtained from previ-
ous samples. In this way, dynamic sampling offers the potential
of much greater fidelity, but at the cost of greater complexity.
Existing methods for dynamic non-uniform sampling of images
are based on the intuition that sampling rates should be greatest
in locations of greatest variation, but recent developments in
the theory of optimal experimental design offer a theoretical
framework for optimal sampling based on the use of a formal
Bayesian prior model.

In this paper, we introduce a fast dynamic image sampling
framework based on Bayesian experimental design (BED). The
method, which we call model-based dynamic sampling (MBDS)
allows for the use of a general prior distribution for the image,
and it incorporates a pixel-wise sampling constraint in the BED
framework. The MBDS works by first generating L stochastic
samples (i.e., images) from the posterior distribution given the
current measurements, and then selecting the pixel with the
greatest posterior variance. We also introduce a computationally
efficient method for computing the stochastic samples through a
local updating technique.

I. INTRODUCTION

Many applications can benefit from image sampling strate-
gies that can select a relatively small set of measurements
to accurately reconstruct the image. For example, scanning
electron microscopy (SEM) and computed tomography (CT)
are applications in which it is advantageous to minimize the
number of measurements [1].

Optimized sampling strategies fall into two categories: static
and dynamic. Static sampling methods can be used to pre-
select the measurements to achieve the best image fidelity.
These methods include random sampling strategies such as
in [2], methods based on an a priori knowledge of the
object geometry as in [3], and methods based on optimal
experimental design (OED) [4].

Alternatively, dynamic sampling methods use all previous
samples to determine each new measurement. Therefore, dy-
namic sampling offers the potential for greater fidelity of the
reconstructed image, but at the cost of greater complexity.
In [5], [6] Kovačević et al. proposed methods for dynamic
sampling of image pixels designed to speed acquisition for
fluorescence microscopy applications. This work was designed
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to track features of a time-varying image with the use of
a particle filter. In [7], initially different sets of pixels are
measured to estimate the image, and further measurements
are made where the estimated signal is non-zero. Addition-
ally, application specific dynamic sensing methods have been
proposed in [8] for selecting optimal K-space spiral and line
measurements for magnetic resonance imaging (MRI), and in
[9] for selecting measurement angles for binary CT. Apart
from these methods, dynamic compressive sensing (DCS)
methods have been proposed in [10], [11] and [12]. However,
DCS is based on the assumption that the measurement is
formed by the projection of the signal in an unconstrained
direction. This differs fundamentally from the constrained
problem of sampling a single pixel at a time. Also, even though
DCS methods are based on Bayesian statistics, the existing
methods are limited in the selection of the prior distribution.

In this paper, we propose a general framework for model-
based dynamic image sampling (MBDS) based on Bayesian
experimental design (BED). Our algorithm allows the use of
a broad class of posterior distributions so that an application
specific model can be selected. It also allows for the incorpo-
ration of a general class of constraints in the measurement
projection, which is essential in many applications. So for
example, in conventional spatial sampling, each measurement
must be enforced to be the projection of a single pixel; or
in tomographic projection, each view must be enforced to be
the integration of the image along projection lines. In practice,
this constraint changes the BED problem substantially because
with each new measurement, the eigenvector structure of the
posterior distribution must be re-estimated.

In order to work with a general prior and projection
constraints, our MBDS method is based on direct stochastic
sampling of the posterior distribution. In particular, it works by
maintaining L stochastic samples, or images, generated from
the posterior distribution, and then uses this set of L images
to compute an empirical covariance, from which the optimal
sample is determined. In [13], a similar approach is proposed
to design measurements for a biochemical network with rela-
tively low dimension. However, for a high-dimensional image,
direct Monte Carlo sampling of the posterior would require
too much computation for most applications. So in order to
make our approach computationally practical, we introduce
a technique for locally updating the stochastic sample in
the neighborhood of each new measurement. This technique
dramatically reduces computation as compared to brute-force
posterior sampling.
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II. BAYESIAN EXPERIMENTAL DESIGN (BED) OVERVIEW

The objective of BED is to obtain a relatively small set
of measurements that allow for accurate reconstruction of an
unknown signal x. Let y(k) denote the vector composed of the
first k measurements, and let x denote the unknown signal.
Then on the kth measurement, the entire vector of past and
present measurements is given by

y(k) = A(k)x+ w(k), (1)

where A(k) is the projection matrix, and w(k) is Gaussian
measurement noise that is assumed to be both independent of
x and to have independent components, with variance σ2

noise.
Each row of A(k) is assumed to be a vector m of unit length so
that ∥m∥ = 1. This restriction to unit length vectors is assumed
so that the signal-to-noise ratio of a single measurement is
fixed.

Our objective is to then select each new measurement vector,
m(k), to be in the direction of maximum variation of the
posterior distribution. More specifically, if the posterior mean
and covariance is denoted by

µ
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x|y ! E
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, (2)
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then the measurement projection in the direction of maximum
variation, m(k), is given by

m(k) = arg max
m∈D

(

mtR
(k)
x|ym

)

, (4)

where D = {m ∈ RN : ||m||2 = 1} constrains each
measurement vector to be of unit length. The solution to

equation (4) is the normalized principal eigenvector of R
(k)
x|y .

Once m(k) is found it is appended to A(k) to form A(k+1):

A(k+1) =

(

A(k)

m(k)t

)

. (5)

In the next iteration x is measured using the measurement
projection m(k) to form y(k+1).

We will primarily be interested in the case when D incorpo-
rates additional constraints. We define the set of measurements
that incorporate such constraints as M ⊂ D.

III. UNCONSTRAINED DYNAMIC SAMPLING WITH A

GAUSSIAN PRIOR

From equation (4), it is clear that selecting a model for the
posterior distribution is critical. If we assume that x is a zero
mean Gaussian random vector with covariance matrix B−1,
then we know that its distribution must have the form

pk(x) =
|B|

1
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, (6)

and therefore that the posterior distribution must have the form
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(7)

where z is a normalizing constant, and Λ(k) is the noise
covariance matrix.

Then R
(k)
x|y =

[

(A(k))tΛ(k)(A(k)) +B
]−1

. Notice that in

this case, the posterior covariance R
(k)
x|y is not a function of

the data y(k), and therefore the recursion in equations (3), (4),
and (5) does not depend on the measurements. Consequently,
when the prior is Gaussian, the measurement projections can
be computed in advance. It should also be mentioned that in
this case, each new measurement is D-optimal, and therefore
results in a D-optimal sequential experimental design [4].

For the case when the measurements are unconstrained,
mk ∈ D, the eigen-structure of the covariance does not change
after each measurement selection. So then it can be shown that
the K best measurements are the K principal eigen-vectors of
the covariance matrix, Rx|y [11].

However, we are interested in the case when the measure-
ments are constrained, m(k) ∈ M, where M ⊂ D, and the
prior is non-Gaussian. For this case, the covariance matrix
must be re-estimated after each iteration and equation (4)
becomes

m(k) = arg max
m∈M

(

mtR
(k)
x|ym

)

. (8)

Furthermore, we would like a framework that can incorporate
any posterior distribution, so that an application specific prior
distribution can be used.

IV. MODEL-BASED DYNAMIC SAMPLING (MBDS)

The MBDS method is designed to work with a wide range
of priors and sampling constraints by directly generating
stochastic samples from the posterior distribution. Figure 1
specifies the MBDS method in pseudo-code. For each new
sample, L images are generated from the posterior distribution
using Monte Carlo (MC) methods, and then these L images
are used to compute an estimated covariance for the posterior
distribution.

The estimated sample covariance is given by

R̂
(k)
x|y =

1

L− 1

L
∑

i=1

(

x(k,i) − µ̂
)(

x(k,i) − µ̂
)t

, (9)

where x(k,i) is the ith image out of L that are generated before
the kth sample is taken. With this covariance, the measurement
vector is then selected with the constraint that m ∈ M, where
M ⊂ D. In our examples, we constrain each measurement
to be of a single pixel; however, other choices are possible.
Then, M =

{

ei ∈ RN : ei(i) = 1; ei(j) = 0 ∀j ̸= i
}

, and the
new measurement will be the pixel location with the largest
posterior variance.

Generating sample vectors from the posterior distribution
pk(x|y(k)) can be computationally expensive, particularly
when x is a high-dimensional image. To counter this problem,
we introduce a strategy of localized stochastic sample updates
in which we only update a block surrounding the measured
pixel.

Instead of performing computationally expensive (MC)
sampling for the entire image x ∈ RN , we only perform
it for a window ws ∈ Rb from x, where b << N .
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function M∗ ← MBDS

Generate samples from prior distribution p(x)
{

x(0,1), x(0,2), . . . x(0,L)
}

%Outputs: M∗ - Selected set of measurements

for (k = 1,k ≤ K, k + +) do

Estimate R̂
(k)
x|y

using equation (9)

m(k) = arg max
m∈M

(

mtR
(k)
x|y

m
)

ỹ(k) = m(k)x + w(k)

y(k) =

(

y(k−1)

ỹ(k)

)

Generate L samples from pk(x|y
(k))

{

x(k,1), x(k,2), . . . x(k,L)
}

end for

end function

Fig. 1. Pseudo-code for MBDS. K is the number of total measurements to
be taken; L is the number of sample vectors generated from the posterior;
M is a constrained subset of all possible measurements; x(k,j) refers to the
jth sample vector drawn from pk(x|y(k)). Note that y(0) refers to the case
when no measurements have been made.

Here, ws includes the measured pixel location and a block
surrounding it. Therefore, we maintain L stochastic samples
from the posterior distribution and update them locally once a
measurement is made. The block-posterior distribution is then,
pk(ws|y(k), w∼s), where w∼s are the pixel locations outside
of the window ws.

Consider that the samples from the previous iteration are
given by

{

x(k−1,1), x(k−1,2), . . . x(k−1,L)
}

. Then we stochas-
tically sample for the block surrounding the measured pixel to

generate sample vectors,
{

w
(k,1)
s , w

(k,2)
s , . . . w

(k,L)
s

}

, from the

block-posterior. Next, we use these stochastically generated
samples to replace these corresponding windows of pixels in
the L images

{

x(k−1,1), x(k−1,2), . . . x(k−1,L)
}

, and then this

forms the new set of sample images
{

x(k,1), x(k,2), . . . x(k,L)
}

.
This procedure is illustrated in Figure 2.

A. Generating Samples from a Block-Posterior Distribution

Given that the block posterior distribution has the form
of a Gibbs distribution, well known methods such as the
Metropolis algorithm [14] or the Metropolis-Hastings (MH)
algorithm [15], [16] can be used to draw samples from it.
In our implementation we use the MH algorithm, where a
multivariate Gaussian distribution is used as the proposal
distribution.

The proposal distribution we use is a second order Taylor
series approximation to log pk(ws|y(k), w∼s). In particular, a
Gaussian proposal distribution, qk(ws|y(k), w∼s), is selected
so that its mean and covariance can be fit using a Taylor series
expansion of the log posterior distribution.

V. EXPERIMENTS CONDUCTED

In this section, we compare results from MBDS with two
sampling strategies - uniformly spaced sampling (US) and
random sampling (RS). We begin by presenting details of the
posterior distribution and reconstruction algorithm that we use.

A. Posterior Distribution and Image Reconstruction

We model the distribution of the unknown x using a q-
GGMRF [17] since it has been used for accurate image

Fig. 2. The MBDS algorithm with localized posterior sample updates, to
obtain K measurements. Here L sample images are kept in memory and
updated locally after each new measurement is made.

reconstruction in medical [18] and materials imaging [19]. The
q-GGMRF has the form

pk(x) =
1

z
exp

⎧

⎨

⎩

−
∑

{i,j}∈P

1

2

(
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σx
|q

c+ |xi−xj

σx
|q−p

)

⎫

⎬

⎭

. (10)

Here, p, q, ci and σx are parameters of the distribution, P is the
set of all unique pairs defined according to the neighborhood,
and z is the normalizing partition function of the distribution.
The resulting posterior is then

pk(x|y
(k)) =

1

z
exp

{

−
1

2
∥y(k) −A(k)x∥2Λ(k)

−
∑

{i,j}∈P

1

2

(

|xi−xj

σx
|q

c+ |xi−xj

σx
|q−p

)

⎫

⎬

⎭

. (11)

We define the neighborhood as the 8 pixels surrounding the
pixel considered.

For image reconstruction, any method that can reconstruct
the image from a sparse set of measurements can be used.
For our experiments we use maximum a posteriori (MAP)
estimation. Since we use the distribution in equation (11)
as our posterior, the resulting cost function is non-quadratic,
and a closed form solution for the maximum of this function
cannot be analytically calculated. Therefore, we convert this
problem into an iterative quadratic optimization problem by
using Majorization techniques [20]–[22]. In conjunction with
Majorization, we use the Iterative Coordinate Descent (ICD)
optimization method [23], [24] to solve the optimization
problem.
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(a) Original image (b) MBDS - mea-

sured pixels (13%)

(c) MBDS - mea-

sured image (13%)

(d) MBDS - recon-

struction (13%)
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Fig. 3. Dynamic sampling simulation on Geometric Shapes (100 × 100).
(b): First 13% of measured pixel locations (red) selected using MBDS.
(c): Measured image (13%). (d): Image reconstructed using (c). (f) and (g):
Reconstructed images when sampling locations (13%) are chosen using RS
and US.

Since we assume that a measurement only affects a block of
pixels surrounding the measured pixel, we only perform MAP
estimation for the window ws. Therefore, after each measure-
ment is made, we only estimate ŵ

(k)
s , the reconstruction for

block ws. We then insert ŵ
(k)
s into x̂(k−1), the reconstruction

of the whole image before the kth measurement is made, to
form x̂(k).

B. Experimental Setup and Evaluation of Results

The measurement noise for each pixel was simulated to be
independent and Gaussian with a variance of σ2

noise = 9,
and the pixel values are between 0 − 255. The resolutions
of the two images used were 100 × 100 and 256 × 256.
The block-size we used for localized stochastic sampling is
16 × 16. The parameters we used for the prior distribution
were, p = 1.2, q = 2, σx = 6 and c = 1. For both cases
we used L = 20 samples from the posterior distribution to
estimate the sample variance. In MBDS the first 1.5% of
measurement locations are uniformly spaced apart. Then, each
new measurement location is selected according to the MBDS
algorithm. In both these experiments, when using MBDS we
select a new measurement in approximately 0.6 seconds.

In the first experiment, the image shown in Figure 3(a)
was measured using RS, US and MBDS. This image, Ge-
ometric Shapes (GS), was a simulated image we created.
Figure 3(b) shows the first 13% of measurement locations
selected by MBDS and Figure 3(c) shows the corresponding
measured image. The reconstructed image is shown in Figure
3(d). Figures 3(f) and 3(g) show the reconstructed images
for random sampling (RS) and uniformly spaced sampling
(US) when the same percentage (13%) of measurements are
acquired. From Figure 3(d) we observe that the edges are
better preserved when MBDS was used for measurement
selection. Furthermore, from Figure 3(e) where the root mean

(a) Original image (b) MBDS - mea-

sured pixels (8%)

(c) MBDS - mea-

sured image (8%)

(d) MBDS - recon-

struction (8%)
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(f) RS - reconstruc-

tion (8%)
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struction (8%)

(h) Original (i) RS - re-
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(j) US - re-

construction

(k) MBDS -
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samples

Fig. 4. Dynamic sampling simulation on Fluocel.pgm (256×256). (b): First
8% of measured pixel locations (red) selected using MBDS. (c): Measured
image (8%). (d): Image reconstructed using (c). (f) and (g): Reconstructed
images when sampling locations (8%) are chosen using RS and US. (h): patch
extracted from (a); (i):patch extracted from (d); (j): patch extracted from (f);
(k): patch extracted from (g); (l): patch extracted from (b).

squared error (RMSE) versus the percentage of measurements
is plotted, we observe that MBDS outperforms US and RS
quantitatively as well. From Figures 3(b) and 3(c) we observe
that our algorithm concentrates measurements on the most
informative pixels, the feature edges, while sparsely measuring
other regions of the image.

For the second experiment we used a real image
(Figure 4(a)) provided by the University of Granada
(http://decsai.ugr.es/cvg/dbimagenes/). Figure 4(b) shows the
first 8% of measurement locations selected by MBDS, Figure
4(c) the corresponding measured image and Figure 4(d) the
reconstructed image. Figures 4(f) and 4(g) show the recon-
structed images for RS and US respectively. Figures 4(i),
4(j) and 4(k) are patches extracted from the reconstructions,
corresponding to the patch shown in Figure 4(h). Here we
observe that by using MBDS for measurement selection, the
edges of the feature as well as the details within the feature
are preserved in the reconstructed patch. Figure 4(l) further
illustrates this by showing the measurement locations selected
by MBDS.

VI. CONCLUSION

In this paper, we presented a general framework for con-
strained dynamic sampling, which can incorporate a broad
class of posterior models. The method is based on stochastic
sampling of the posterior distribution using a computationally
efficient algorithm; experimental results show that it can sub-
stantially improve reconstruction quality given a fixed number
of measurements.
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