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ABSTRACT

This paper presents new sufficient conditions under which a field (or

image) can be perfectly reconstructed from its samples on a union

of two lattices that share a common coarse lattice. In particular, if

samples taken on the first lattice can be used to reconstruct a field

bandlimited to some spectral support region, and likewise samples

taken on the second lattice can reconstruct a field bandlimited to an-

other spectral support region, then under certain conditions, a field

bandlimited to the union of these two spectral regions can be recon-

structed from its samples on the union of the two respective lattices.

These results generalize a previous perfect reconstruction theorem

for Manhattan sampling, where data is taken at high density along

evenly spaced rows and columns of a rectangular grid. Additionally,

a sufficient condition is given under which the Landau lower bound

is achieved.

Index Terms— Image sampling, sampling methods.

1. INTRODUCTION

Manhattan sampling is a new approach to sampling two dimensional

fields (i.e. images) where data is taken densely along evenly spaced

rows and columns. An example of a Manhattan grid is shown in

Fig.1, where there are k1 = 4 samples between each column and

k2 = 3 samples between each row. This is a special case of cutset

sampling, which has been used to good effect in both lossy and loss-

less image compression, especially, for bilevel images [1–3]. Man-

hattan sampling has also been proposed as a new approach to sam-

pling grayscale images [4, 5]. Finally, Manhattan sampling is useful

in wireless sensor network applications where the goal is to estimate

a two-dimensional field. If sensors are deployed on a Manhattan

grid, as opposed to random placement, then the energy costs of data

transmission tends tend to be much smaller [6]. Such “Manhattan

networks” can be used to efficiently solve the problem of RSS-based

source localization [7].

Manhattan sampling can be viewed as sampling on the union

of two lattices: one lattice is dense in the horizontal direction and

coarse in the vertical direction, while the other lattice is coarse in

the horizontal direction and dense in the vertical direction. Recently,

a sampling theorem for Manhattan grids showed that a field can be

recovered from its Manhattan grid samples when its spectrum is sup-

ported on the union of rectangular Nyquist regions corresponding to

the spacing of the two rectangular lattices [8]. An example of such

a cross-shaped region is shown in Figure 2(a). This region is max-

imal in the Landau sense, i.e. the Lebesgue measure of the union
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Fig. 1. Examples of a union of two lattices that share a common

coarse lattice with k1 = 4 and k2 = 3.

of Nyquist regions is exactly the sampling density of the Manhattan

sampling set [9].

Sampling theorems for a single lattice in multiple dimensions

have long been studied [10] (see also [11, p. 72], [12, p. Chap. 3], [13,

p. 43]). Recently, Venkataramani and Bresler obtained results for

sampling on unions of shifted lattices in one dimension [14, 15],

finding conditions under which the sampling density could reach or

become arbitrary close to the Landau bound. Additionally, Behmard

and Faridani studied sampling on unions of shifted lattices in two di-

mensions, giving “compatibility conditions” such that perfect recov-

ery was possible [16,17]. However, such conditions are not satisfied

by Manhattan sampling and the spectral support region consisting

of the union of Nyquist regions. They also did not give conditions

under which the Landau lower bound was reached.

A limiting case of Manhattan sampling is when the density of

samples along the grid lines can be increased arbitrarily. Sampling

theorems and reconstruction methods for this limiting scenario were

studied in [18] and [19]. The primary application addressed in these

works was the sampling of spatially bandlimited fields using mobile

sensors [20]. In these works, the spectra of such fields were required

to satisfy several conditions, among them being the condition that

the spectral support be convex. Again, convexity is not satisfied by

a spectral support consisting of the union of Nyquist regions.

In this work, we generalize the result of [8] to slanted Manhat-

tan grids, which is the union of two lattices that share a common

coarse lattice, as shown in Fig.1. We find new sufficient conditions

under which a two-dimensional field can be perfectly reconstructed

from its samples on a slanted Manhattan grid. We also generalize the

limiting case result of [18] and [19] to arbitrary non-convex spectral

regions. We are particularly concerned with conditions where the

image spectrum explicitly satisfies the Landau bound. Reconstruc-

tion conditions are given in Section 2.1, and the Landau condition is

given in Section 3. We conclude our findings in Section 4.
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2. PROBLEM DESCRIPTION AND PROPOSED SOLUTION

We begin by describing some notation. Let x : R
2 → C be a

square-integrable field (image) with corresponding Fourier trans-

form X given by

X(f) =

Z

R2

x(t) exp(−i2π〈t, f〉)dt.

Let Ω be a compact subset of R
2. For x ∈ L2(R2), we say that

x (or X) is bandlimited to Ω if the spectrum X is supported on Ω,

i.e. X(f) = 0, ∀f 6∈ Ω. Let L denote a countable set of points in

the plane. We say L is a sampling set for region Ω if all functions

x bandlimited to Ω can be uniquely reconstructed from their values

{x(t), t ∈ L}. Let D(L) denote the density of a sampling set L in

two-dimensions defined as

D(L) = lim inf
r→∞

inf
y∈R2

#(L ∩ Br(y))

4r2

where # denotes cardinality and Br(y) := {z ∈ R
2 : ‖z − y‖∞ ≤

r} is a square of side 2r centered at y. Landau showed that a neces-

sary condition for L to be a sampling set for Ω is that D(L) ≥ |Ω|
[9], where |Ω| denotes the Lebesgue measure of the set Ω. We say

that L achieves the Landau bound if D(L) = |Ω|.
In this paper, we are primarily concerned with sampling sets that

are lattices or unions of lattices. Let v1, v2 ∈ R
2 be linearly inde-

pendent vectors that generate a coarse lattice LC = {mv1 + nv2 :
m,n ∈ Z}. Let u1, u2 satisfy

〈ui, vj〉 = δij (1)

so that {u1, u2} generate the reciprocal lattice L⊥
C . Let L1 (L2)

denote a lattice generated by the vectors { v1

k1

, v2} ({v1,
v2

k2

}), where

k1, k2 ∈ Z+\{0} and max{k1, k2} > 1. Let Ω1 (Ω2) be a compact

subset of R
2 such that L1 (L2) forms a sampling lattice for images

bandlimited to Ω1 (Ω2). Let Ω := Ω1 ∪ Ω2 and S := Ω1 ∩ Ω2. In

addition, we assume that the boundaries of Ωi have zero Lebesgue

measure.

We study the problem of sampling on M := L1 ∪L2, the union

of two lattices that intersect at a common coarse lattice LC . This

includes the Manhattan grid shown in Fig.1(a) or the more general

slanted Manhattan grid shown in Fig.1(b). We are interested in fields

bandlimited to the union of frequency support regions Ω = Ω1∪Ω2.

In particular, we try to answer the following two questions:

When does M form a sampling lattice for Ω? (2)

and

When does M achieve the Landau bound for Ω? (3)

The answer to (2) was answered previously in [8] for rectangu-

lar Manhattan grids when Ω1 and Ω2 were the rectangular Nyquist

regions centered at the origin, corresponding to lattices L1 and L2,

respectively. Although it was not explicitly stated in the previous

work, it can be shown that the Landau bound is achieved in this case.

The main focus of this paper is to generalize this result to the union

of two lattices that share a common coarse lattice, and for more gen-

eral frequency support regions than the rectangular Nyquist regions.

2.1. Preliminaries

First, let us consider the two sampling lattices L1 and L2 separately

and see their effects in the frequency domain. It is clear that the

reciprocal lattice L⊥
1 of L1 is generated by the vectors {k1u1, u2}

and that the reciprocal lattice L⊥
2 of L2 is generated by the vectors

{u1, k2u2}. Thus the sampled spectrum from L1 and L2 are respec-

tively given by

X1(f) =
X

i,j∈Z

X(f − ik1u1 − ju2) =
X

f ′∈L⊥

1

X(f + f ′), (4)

X2(f) =
X

i,j∈Z

X(f − iu1 − jk2u2) =
X

f ′∈L⊥
2

X(f + f ′). (5)

These equations are the basis of results in this paper.

2.2. Sufficiency via aliasing condition

The following proposition gives a simple sufficient condition for (2).

Proposition 2.1 (Spectral Reconstruction via Aliasing Condition:).

For two sets B1 and B2, define B1+B2 = {b1+b2 : b1 ∈ B1, b2 ∈
B2}. Suppose

“

Ω2 + L⊥
1

”

∩ Ω1 = S. (6)

Then the set M = L1 ∪ L2 forms a sampling set for Ω1 ∪ Ω2.

Proof. Assume (Ω2 + L⊥
1 ) ∩ Ω1 = S is true. Let f ∈ Ω1 \ S

be arbitrary. If there exists f ′ ∈ L⊥
1 such that f + f ′ ∈ Ω2, then

f ∈ (Ω2 + L⊥
1 ) and thus

f ∈
“

Ω2 + L⊥
1

”

∩ Ω1 \ S

which contradicts (6). Thus for all f ′ ∈ L⊥
1 we must have f + f ′ /∈

Ω2. Hence for f ∈ Ω1 \ S the sampled spectrum of (4) satisfies

X1(f) =
X

f ′∈L⊥

1

f+f ′∈Ω1\S

X(f + f ′).

Since L1 forms a sampling lattice for Ω1 it further follows that

X1(f) = X(f), for all f ∈ Ω1 \ S

and thus the portion of the spectrum in Ω1 \ S can be decoded first.

Now consider (5), which can be rewritten under the given bandlimi-

tation assumptions as

X2(f) =
X

f ′∈L⊥

2

f+f ′∈Ω1\S

X(f + f ′) +
X

f ′∈L⊥

2

f+f ′∈Ω2

X(f + f ′)

The first term is known since Ω1 \ S has already been decoded, and

thus can be replaced by X(f + f ′) = X1(f + f ′). Furthermore,

the second term is exactly X(f) for f ∈ Ω2, since L2 is a sampling

lattice for Ω2 by assumption. Thus, for f ∈ Ω2, X(f) can be recov-

ered by simply subtracting the known first term from X2(f). The

entire reconstruction procedure is thus given by

X(f) =

8

>

>

>

<

>

>

>

:

X1(f), f ∈ Ω1 \ S

X2(f) −
∑

f ′∈L⊥

2

f+f ′∈Ω1\S

X1(f + f ′), f ∈ Ω2. (7)

⊓⊔

A special case of this result is presented next.
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u  
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k 
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(a) Satisfies conditions in [8]
and Propositions 2.1, 2.2, 2.4

k 
    u
  

k    u  

u  
u  

(b) Satisfies Propositions 2.2
(implies satisfying Prop. 2.1).

k 
    u
  

k    u  

u  
u  

(c) Satisfies Proposition 2.1
but not Props. 2.2 or 2.4.

k 
    u
  

k    u  

u  
u  

(d) Satisfies Proposition 2.4
but not Propositions 2.1 or 2.2

k 
    u
   u  

u  

k
    u  

(e) Satisfies Proposition 2.2.

Fig. 2. Examples of supports of spectra that can be reconstructed using results presented in this paper. (a-d) can be recovered from samples

on the rectangular Manhattan grid in Fig.1(a) and (e) can be recovered from samples on the slanted Manhattan grid in Fig.1(b). The blue

curves indicate the boundary of Ω1 and red curves that of Ω2.

Proposition 2.2 (Aliasing conditions for spectra in strips:). Let ℓi

denote any line parallel to ui. Suppose Ω1(Ω2) is a set contained

within the strip between lines ℓ1 and ℓ1 + u2 (ℓ2 and ℓ2 + u1 ) such

that S = Ω1 ∩ Ω2 is the entire region contained inside a parallelo-

gram bounded by ℓ1, ℓ1+u2, ℓ2, ℓ2+u1. Then M = L1∪L2 forms

a sampling set for Ω.

Sketch of proof. From the geometry of the sets it can be seen that

“

Ω2 + L⊥
1

”

∩ Ω1 =
“

S + L⊥
1

”

∩ Ω1.

However since L1 is a sampling lattice for Ω1 it follows that the

second set above must equal S. The conclusion then follows from

Proposition 2.1. ⊓⊔

The result of sampling on the union of two rectangular lattices

considered in [8] follows immediately from the above result.

2.3. Sufficiency via graph condition

In some applications like mobile sensing [18], the over-sampling fac-

tors k1 and k2 can be increased without too much additional cost.

Let P be a parallelogram with two sides parallel to u1 of magnitude

k1‖u1‖ and two sides parallel to u2 of magnitude k2‖u2‖. Suppose

ki are large enough so that Ω is contained within some shifted ver-

sion of P . In such a scenario, the sampled spectra in (4) and (5) are

aliased only in one direction and thus satisfy

X1(f) =
X

j∈Z

X(f − ju2), f ∈ Ω (8)

and

X2(f) =
X

i∈Z

X(f − iu1), f ∈ Ω. (9)

In this case, a different sufficient condition for (2) can be obtained

via a condition on a graph. We need the following lemma proved

using a generalization of the technique used in [18, Thm 2.4].

Lemma 2.3. Let L = {mu1 + nu2 : m,n ∈ Z} denote the two-

dimensional lattice generated by the vectors u1 and u2, and let V
denote a finite subset of L. By an abuse of notation we use G =
(V, E) to denote a graph whose vertices correspond to the elements

of V . Vertices f1, f2 ∈ V are connected by an edge if f1 − f2 is an

integer multiple of u1 or u2. Furthermore, for f1, f2 ∈ V we say

that f1 and f2 are connected by a horizontal edge if f1 − f2 is an

integer multiple of u1. In this case we also say that f1 and f2 are

horizontal neighbors. Similarly we say that f1 and f2 are connected

by a vertical edge and that f1 and f2 are vertical neighbors if f1−f2

is an integer multiple of u2. We use NG
1 (f) (NG

2 (f)) to denote the

set of all vertical (horizontal) neighbors of f .

Suppose that there is a value X(f) associated with all vertices

f ∈ V , such that for each f ∈ V we are given consistent (i.e., they

admit at least one solution) linear equations of the form

X1(f) =
X

f ′∈NG
2

(f)

X(f ′), f ∈ V, (10)

and

X2(f) =
X

f ′∈NG
1

(f)

X(f ′), f ∈ V. (11)

Suppose further that the graph G does not contain any cycle with

alternating horizontal and vertical edges. Then there is a unique

solution to the equations of (10) and (11).

Proof. We prove this statement by induction on |V |. Clearly if

|V | = 1 the statement is true since in this case equation (10) be-

comes X1(f) = X(f) for f ∈ V .

Suppose that the claim is true for all choices of V with |V | =
N − 1. We will now show that the statement is true for all choices

of V with |V | = N . Consider any maximal-length alternating path

P in graph G alternating between horizontal and vertical edges such

that no two adjacent edges traversed in the path are both horizontal

or both vertical. Such a maximal path must exist because V is finite

and G does not have alternating cycles. Pick any end-point vertex

f ′ of P . Assume without loss of generality that the edge in P inci-

dent on f ′ is horizontal. Then f ′ does not have vertical neighbors

because otherwise the path would not have been maximal. Since f ′

does not have vertical neighbors (10) becomes X1(f
′) = X(f ′).

Thus X(f ′) can be uniquely decoded. Let G′ = (V ′, E′) be the

subgraph of G obtained by removing from G the vertex f ′ and all

edges incident at f ′. Clearly, G′ has N − 1 vertices and does not

contain any cycle with alternating horizontal and vertical edges. For

each f ∈ V ′ define

Y1(f) =

(

X1(f) − X(f ′), if f ∈ NG
2 (f ′),

X1(f), otherwise,

Y2(f) =

(

X2(f) − X(f ′), if f ∈ NG
1 (f ′),

X2(f), otherwise.
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Combining with (10) and (11) it is clear that the following are true:

Y1(f) =
X

ef∈NG′

2
(f)

X( ef), f ∈ V ′, (12)

and

Y2(f) =
X

ef∈NG′

1
(f)

X( ef), f ∈ V ′. (13)

Thus G′ satisfies all the conditions of the induction assumption and

hence it follows that all vertices in G′ can be uniquely decoded. Thus

all vertices in G can be uniquely decoded. Since this holds for all

values of N , it follows by the principle of mathematical induction

that the lemma is proved for all choices of V . ⊓⊔

In order to apply the lemma we need some notation and termi-

nology. For every f ∈ Ω consider the set of frequencies

Af := {f ′ ∈ Ω : f ′ − f = au1 + bu2 for some a, b ∈ Z}.

Let Gf denote a graph with vertices representing the entries of Af .

In Gf we say that vertices corresponding to frequencies f1, f2 are

connected by an edge if f1−f2 is an integer multiple of u1 or u2, and

define horizontal and vertical edges and neighbors as in the statement

of Lemma 2.3. The following result is immediate from the lemma.

Proposition 2.4 (Spectral Reconstruction via Graph Condition).

Suppose the following conditions are true.

1. The sampled spectra of (4) and (5) satisfy (8) and (9).

2. For every f ∈ Ω, the graph Gf does not contain any cycle

with alternating horizontal and vertical edges. Equivalently,

this means that all cycles in Gf contain at least one pair of

consecutive horizontal edges or one pair of consecutive ver-

tical edges.

Then the set M := L1 ∪L2 forms a sampling set for Ω = Ω1 ∪Ω2.

Proof. It is easy to see that conditions of Lemma 2.3 are satisfied by

Af for all f ∈ Ω. It follows that X(f) can be uniquely identified

for all f ∈ Ω, and thus M is a sampling set for Ω. ⊓⊔

We remark that the result of Proposition 2.4 holds for all Ω that

satisfy the conditions of the proposition, whether or not it can be

expressed as a union of Ω1 and Ω2.

It is possible to design an iterative reconstruction algorithm for

reconstructing fields that satisfy the conditions of Proposition 2.4

by following the steps in the proof. However, we do not include

the details due to lack of space. A weakness of Proposition 2.4 is

that a graph Gf must be formed for each f ∈ Ω and then a set of

equations must be solved. In general, this is difficult because Ω is an

uncountable set, but in practice there are often subsets of Ω that have

identical graph structures Gf , and thus groups of frequencies can be

recovered simultaneously. An example of such a case is illustrated in

Figure 2(d). We believe that it is possible to generalize Proposition

2.4 to solving a finite number of graph problems, instead of having

to solve a separate graph problem for every f ∈ Ω.

Two examples of supports of spectra that satisfy conditions of

Proposition 2.1 are shown in Figures 2(a,b,c,e). Note that only Fig-

ures 2(a,b,e) satisfy the conditions for Proposition 2.2. We also note

that Figure 2(c) does not satisfy the conditions of Propositions 2.2

or 2.4, despite satisfying Proposition 2.1. Now consider a spectrum

supported on the region shown in Figure 2(e). It can be seen that

that this spectrum satisfies the conditions of Proposition 2.4 but not

of Proposition 2.1. Thus examples of Figures 2(c) and 2(e) suggest

that Propositions 2.4 and 2.1 are both not implied by the other.

3. ACHIEVING THE LANDAU BOUND

We now present a useful lemma that gives a condition under which

achieving the Landau bound is preserved when sampling on a union

of lattices that share a common coarse lattice, thus providing some

insight to question (3).

Lemma 3.1. For i = 1, 2, let Li be a sampling set for Ωi that

achieves the Landau bound, and suppose that LC = L1 ∩ L2 forms

a sampling set for fields bandlimited to the intersection S = Ω1∩Ω2.

If the set M = L1 ∪ L2 forms a sampling set for Ω1 ∪ Ω2, then M
achieves the Landau bound.

Proof. Using D(L) to denote density of a sampling set L, we have

D(M) = D(L1) + D(L2) − D(LC )

= |Ω1| + |Ω2| − D(LC)

≤ |Ω1| + |Ω2| − |Ω1 ∩ Ω2|

= |Ω1 ∪ Ω2|.

The first step follows from the definition of M , and the second re-

lation follows because Li achieves the Landau bound. Since LC is

a sampling lattice for S = Ω1 ∩ Ω2 by assumption, the third step

follows from the fact that D(LC) ≥ |Ω1 ∩ Ω2|. The final relation

follows from elementary set theory. Since it was originally assumed

that M is a sampling set for Ω1 ∪ Ω2, the Landau lower bound says

that D(M) ≥ |Ω1 ∪ Ω2|. Combining these two inequalities, we ob-

tain D(M) = |Ω1 ∪ Ω2| and hence M achieves the Landau bound.

⊓⊔

In summary, this lemma says that if two lattices are optimal (in

the Landau sense) for two frequency regions, and their intersection

is a sampling set for the intersection of the two frequency regions,

then sampling on the union of these two lattices is optimal for the

union of frequency regions. This simple result is powerful because

it allows us to design new optimal sampling sets from other optimal

sampling sets! This result can be applied to Proposition 2.2. If the

original lattices L1 and L2 achieve the Landau bound for Ω1 and

Ω2, respectively, and the conditions for Proposition 2.2 hold, then

M achieves the Landau bound for Ω. Moreover, for each choice

of Ω shown in Figure 2, if the original lattices L1 and L2 achieve

the Landau bound for Ω1 and Ω2, respectively, then M attains the

Landau bound for Ω.

4. CONCLUSIONS AND FUTURE WORK

Classical sampling results for sampling on a lattice Li specify con-

ditions on a set Ωi such that any field bandlimited to Ωi can be re-

constructed exactly from the measurements of the field on Li. In

this work, we presented sufficient conditions for perfectly recon-

structing a field from a union of two lattices L1 and L2 that share

a common lattice. In particular we focused on fields bandlimited

to Ω = Ω1 ∪ Ω2. These conditions can be used to reconstruct a

wide array of frequency support regions, as summarized in Figure 2.

Furthermore, a sufficient condition for achieving the Landau lower

bound was given. There are many avenues for future work, includ-

ing finding necessary conditions for perfect reconstruction besides

the Landau bound, and generalizing these results to higher dimen-

sions. For example, it may be possible to prove that the conditions

of Proposition 2.4 are both necessary and sufficient to ensure that the

union of lattices is a sampling set for spectra supported on the union

Ω of the original spectra. Finally, we also believe that Proposition

2.4 can be generalized and expanded.
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