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ABSTRACT

In this note we show that stable recovery of complex-valued
signals x ∈ Cn up to a global sign can be achieved from
the magnitudes of 4n − 1 Fourier measurements when a cer-
tain symmetrization and zero-padding is performed before
measurement (4n − 3 is possible in certain cases). For real
signals, symmetrization itself is linear and therefore our re-
sult is in this case a statement on uniform phase retrieval.
Since complex conjugation is involved, such measurement
procedure is not complex–linear but recovery is still possible
from magnitudes of linear measurements on, for example,
(Re(x), Im(x)).

1. INTRODUCTION

Recovering a signal from intensity (magnitude) measure-
ments is known as the phase retrieval problem. This problem
has a long history beginning in the 70’s by GERCHBERG and
SAXTON [1] and later by FIENUP [2], who gave explicit re-
construction algorithms for the phase from magnitude Fourier
measurements. Since the magnitude of a linear measurement
cannot distinguish between numbers of unit modulus, stabil-
ity and injectivity for such measurements can only hold up
to a global phase resp. sign, i.e. up to a factor eiω resp. ±1.
One of the challenging tasks in phase retrieval is to deter-
mine the necessary and sufficient number of linear measure-
ments for stability or injectivity. For example, CANDES et.al.
[3] have shown stable reconstruction of any n−dimensional
complex-valued signal from the magnitude ofO(n logn) lin-
ear Gaussian-random measurements. A more principal result
from BALAN et al. in [4] shows that a generic frame exists
with injectivity at 4n−2 measurements. Moreover, they could
give a fast reconstruction algorithm in [5]. Using projection
methods, MONDRAGON and VORONINSKI could even show
in [6] injectivity from 4n− 3 generic linear measurements. In
a recent result [7], BANDEIRA et al. conjecture that 4n − 4
linear measurements are necessary for injectivity. However, a
practical construction and implementation of measurements

at this limiting number seems to be rather hard, but it serves
as an ultimate theoretical bound.

More recently, non-linear or interference–based ap-
proaches are considered to provide unique phase reconstruc-
tion. For example, WANG [8] presented a method where
interference with a known signal y ∈ Cn helps to recover
a signal x ∈ Cn up to a global sign from only 3n Fourier
measurements ∣F(x + ωy)∣2 where ω ∈ C is a root of unity.
For real k–sparse signals, ELDAR and MENDELSON [9] es-
tablished stable recovery from O(k log(n/k)) subgaussian
random measurements with high probability. A very recent
result [10] from EHLER, FORNASIER and SIGL even extends
this to the complex case and provides an explicit reconstruc-
tion algorithm. LU and VETTERLI also use sparsity for
spectral factorization of real valued impulse responses [11].
Moreover, they also give a reconstruction algorithm. A recent
result by WANG and XU [12] states injectivity for k−sparse
complex-valued signals from 4k−2 generic measurements as
long as k < n. Unfortunately, so far (to the authors knowl-
edge) there doesn’t exists a constructive or deterministic
frame providing a recovery or even stable recovery.

In this contribution, we will show a concrete measure-
ment procedure allowing stable recovery of any vector x ∈ Cn

with x0 ∈ R up to a global sign from magnitudes of 4n − 3
measurements. The measurements can be implemented as
linear mappings on, for example, (Re(x), Im(x)) or (x, x̄).
We want to stress the fact, that our measurements are not
complex–linear, since we perform a conjugate symmetriza-
tion on the signal to obtain equality between auto-correlation
and auto-convolution, which allows magnitude measure-
ments from 4n − 3 linear Fourier measurements. However,
this will have implications on certain (compressive) signal
processing tasks since such type of measurements occur prior
to I/Q–down conversion into a suitable complex baseband
model. To prove stability for magnitude Fourier measure-
ments on auto-convolutions, we will use our result in [13]
for the (s, f)−sparse zero-padded circular convolution. In
view of sparsity, zero padding can also be seen as a particular
structured sparse signal subclass in C4n−3.
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2. CIRCULAR CONVOLUTIONS, CORRELATIONS
AND THE RNMP

Let (F)kl ∶= n−
1
2 exp(−i2π kl

n
) be the k, l ∈ {0, . . . , n − 1}

elements of the n×n discrete Fourier transform (DFT) matrix.
If dimension of a matrix is important it also will occur as a
subscript, i.e. here F = Fn. As well-known, F is unitary and
Γ ∶= F2 denotes time-reversal given by its action:

Γ ⋅ (x0, . . . , xn−1)T ∶= (x0, xn−1, . . . , x1)T

In particular Γ is an involution, i.e. Γ2 = F4 = 1. The circular
convolution ∑n−1

l=0 xlyk⊖l (⊖ and ⊕ mean ± modulo n) of two
vectors x,y ∈ Cn is a symmetric bilinear mapping given as:

x⊛ y =
√
nF∗(Fx⊙Fy) = y ⊛ x (1)

and x⊛ x is called (circular) auto-convolution. Similarly, the
circular correlation∑n−1

l=0 xlȳk⊕l is defined as x⍟y ∶= x⊛Γȳ
and we have that Fourier transform of the auto-correlation:

F(x⍟ x) =
√
nFx⊙FΓx

=
√
nFx⊙Fx =

√
n∣Fx∣2

(2)

is given as the squared magnitudes of the Fourier transform of
x. Furthermore, (Si)kl = δk⊕i,l denotes the elements of ith
power of the unit right shift operator S.

In [13] and [14] we have established a stability statement
for zero-padded sparse circular convolutions. Let supp(x) ∶=
{i ∶ xi ≠ 0} be the support of a vector in the canonical ba-
sis and Σn

k ∶= {x ∈ Cn ∶ ∣supp(x)∣ ≤ k} be the k–sparse
vectors. We have the following result on the restricted norm
multiplicativity property (RNMP) for the circular convolution
of sparse zero-padded signals (see [13] for the general defini-
tion):

Theorem 1 (RNMP for circular convolutions, [15, 14]). Let
s, f, n ∈ N with s ≤ f ≤ n. Then there exists a constant
αn′ > 0 with n′ = n′(s, f, n) ∶= min{ñ(s, f), n}, such that
for all x ∈ Σn

s ,y ∈ Σn
f it holds

αn′ ∥x∥ ∥y∥ ≤ ∥(x,0)⊛ (y,0)∥ ≤
√
s ∥x∥ ∥y∥ , (3)

where (x,0), (y,0) ∈ C2n−1 denotes the vectors padded by
n − 1 zeros.

Note that for sufficiently small s and f the constant αn′

depends solely on the sparsity and not on the ambient dimen-
sion n [14]1. Furthermore, without additional restrictions,
zero padding is necessary to obtain a lower bound strictly
greater than zero (see for example also [15] for an explicit
example here). In fact, Theorem 1 is a statement on regular
convolutions. However, it is natural to expect also a bound
without zero padding in prime dimension. Moreover, from
x ⊛ y = Sx ⊛ Sy follows that (3) holds whenever the zeros
are contained in a cyclic block of size n − 1.

1Our first approach on an explicit formula for ñ(s, f) in [15] has been
corrected in [14]

3. RECOVERY FROM THE MAGNITUDE OF
SYMMETRIZED FOURIER MEASUREMENTS

Our contribution is motivated by the framework given in [13]
on bilinear maps. Let B(x,y) be a symmetric bilinear map
and denote its diagonal part by A(x) = B(x,x). Obviously
there holds the binomial-type formula:

A(x1) −A(x2) = B(x1 − x2,x1 + x2) (4)

establishing that such x1 and x2 can be (stable) distinguished
modulo global sign on the basis of A(x1) and A(x2) when-
ever B(x1 − x2,x1 + x2) is well-separated from zero. More
precisely, such a condition is given by the RNMP (given in
(3) for the special case B(x,y) = x ⊛ y to be considered
here). Since B(x,y) = x⊛ y is symmetric one can therefore
combine (4), Theorem 1 and the compression results in [13]
with a union bound over (n

k
) possible support cases of Σn

k .
It then follows that each (zero-padded) k–sparse x for suffi-
ciently large n can be stable recovered modulo global sign
from O(k logn) compressive i.i.d. subgaussian (and suit-
able generalizations based on concentration properties) sam-
ples of its circular auto-convolution (which itself is at most
k2−sparse). However, more important is the estimation of x
based on measurements on its auto-correlation x⍟ x. In par-
ticular, for Fourier measurements this corresponds to the ob-
servation of intensity, see (2). But, circular correlation x⍟ y
is only symmetric when x = Γx̄ (if and only if and the same
also for y). In general, a symmetrization S ∶Cn → C2n−1 is
therefore necessary here:

S(x) ∶= (
=x

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
x0, x1, . . . , xn−1,

=∶x○−³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
x̄n−1, . . . , x̄1)T . (5)

Linear phase filters: The impulse response h ∶= Sn−1
2n−1S(x) =

(xn−1, . . . , x1, x0, x1, . . . , xn−1)T ∈ C2n−1, defines an odd-
length linear-phase filter H(z) = ∑2n−2

k=0 hkz
−k for z ∈ C if

x0 ∈ R, since we have h0 = h2n−2 /= 0 and

hk = h2n−2−k for k ∈ {0, . . . ,2n − 2}. (6)

If xn−1 /= 0, then the impulse response or filter is called Her-
mitian or conjugate symmetric of order 2n − 2, see e.g. [16,
Cha.2]. Hence, by the shift-invariance we get2 for x ∈ Cn

0

A(x) = S(x)⊛ S(x)
= Sn−1

2n−1S(x)⊛ Sn−1
2n−1S(x) = h⊛ h,

(7)

which is the circular auto-convolution of a linear-phase filter.

Let us stress the fact, that the symmetrization map is linear
only for real vectors x since complex conjugation is involved.
On the other hand, S can obviously be written as a linear map

2 Note, that Sn−1
2n−1 centers the impulse response such that it becomes a

causal FIR filter.

1833



on vectors like (Re(x), Im(x)) or (x, x̄). Now, for x0 = x̄0

the symmetry condition S(x) = ΓS(x) is fulfilled (note that
here Γ = Γ2n−1):

S(x) = ( x
x○−
) = Γ( x

x○−
) = Γ( x

x○−
) = ΓS(x). (8)

Let us abbreviate therefore Cn
0 ∶= {x ∈ Cn ∶ x0 ∈ R}. Thus,

for x,y ∈ Cn
0 , circular correlation of (conjugate) symmetrized

vectors is symmetric and agrees with the circular convolution.
To apply Theorem 1 we define the zero-padded symmetriza-
tion (first zero padding, then symmetrization) Sz ∶ Cn →
C4n−3 by:

Sz(x) ∶= S (
x

0n−1
) , (9)

Theorem 2. Let n ∈ N, then ñ = 4n − 3 absolute-square
Fourier measurements of zero padded symmetrized vectors in
Cñ, given by (9), are stable up to a global sign for x ∈ Cn

0 ,
i.e. for all x1,x2 ∈ Cn

0 it holds

∥∣FSz(x1)∣2 − ∣FSz(x2)∣2∥ ≥ c ∥Sz(x1 − x2)∥ ∥Sz(x1 + x2)∥
(10)

with c = c(ñ) = αñ/
√
ñ > 0 and F = Fñ.

Note that we have:

2∥x∥2 ≥ ∥Sz(x)∥2 = ∥x∥2 + ∥x○−∥2 ≥ ∥x∥2

Thus, Sz(x) = 0 if and only if x = 0 and the stability in
distinguishing x1 and x2 up to a global sign follows from the
RHS of (10) and reads explicitly as:

∥∣FSz(x1)∣2 − ∣FSz(x2)∣2∥ ≥ c ∥x1 − x2∥ ∥x1 + x2∥ . (11)

Proof. For symmetrized vectors Sz(x), auto-convolution
agrees with auto-correlation and we get from (2):

F(A(x)) = F(Sz(x)⊛ Sz(x)) =
√
ñ ∣FSz(x)∣2 . (12)

Putting things together we get for every x ∈ Cn
0 :

√
ñ∥∣FSz(x1)∣2−∣FSz(x2)∣2 ∥

= ∥F(A(x1) −A(x2))∥
F is unitary→ = ∥A(x1) −A(x2)∥

(4)= ∥Sz(x1 − x2)⊛Sz(x1 + x2)∥
Thm 1→ ≥αñ ∥Sz(x1 − x2)∥ ⋅ ∥Sz(x1 + x2)∥

(13)

In the last step we use that Theorem 1 applies whenever the
non-zero entries are contained in a cyclic block of length 2n−
1.

In the real case (10) is equivalent to a stable linear em-
bedding in R4n−3 up to a global sign (see here also [9] where
ELDAR and MENDELSON used the ℓ1−norm on the left side)

and therefore this is an explicit phase retrieval statement for
real signals. Recently, stable recovery also in the complex
case up to a global phase from the same number of subgaus-
sian measurements has been achieved by EHLER et al. in
[10]. Here the difference term is lifted to a symmetric ma-
trix difference and the ℓ2−norm to the Frobenius norm. Both
results hold with exponential high probability whereby our
result is deterministic. Nevertheless, Ehler et.al. could show
by [10, Thm.3.1] the convergence of a greedy algorithm if
the deterministic non-linear measurements fulfill a stable em-
bedding and the signals obey a sufficient decay in magnitude.
Since our Theorem 2 guarantees for the non-linear Fourier
type measurements in (10) a stable embedding, there result
ensure a recovery by a greedy algorithm. But, since Sz is
not complex-linear Theorem 2 cannot directly be compared
with the usual complex phase retrieval results. On the other
hand, such an approach can now indeed distinguish the com-
plex phase by the Fourier measurements and symmetrization
provides injectivity for magnitude Fourier measurements up
to a global sign. To get rid of the odd definition Cn

0 one could
symmetrize (and zero padding) x ∈ Cn also by:

Sz(x) ∶= (0n, x0, . . . , xn−1, x̄n−1, . . . , x̄0,0n−1)T ∈ C4n−1

(14)

again satisfying Sz(x) = Γ4n−1Sz(x) at the price of two fur-
ther dimensions. Hence, we also have:

Corrolary 1. Let n ∈ N, then ñ = 4n − 1 absolute-square
Fourier measurements of zero padded and symmetrized vec-
tors given by (14) are stable up to a global sign for x ∈ Cn,
i.e. for all x1,x2 ∈ Cn it holds

∥∣FSz(x1)∣2 − ∣FSz(x2)∣2∥ ≥ 2c ∥x1 − x2∥ ∥x1 + x2∥ (15)

with c = c(ñ) = αñ/
√
ñ > 0 and F = Fñ.

The proof of it is along the same steps as in Theorem 2.
The direct extension to sparse signals as in [13] seems to be
difficult since randomly chosen Fourier samples do not pro-
vide a sufficient measure of concentration property without
further randomization.

4. CONCLUSION

In this note we have shown stable recovery (up to a global
sign) of a signal x from magnitude measurements on the
Fourier transform of its symmetrization Sz(x). For real
signals this procedure is linear and establishes therefore a
phase retrieval method up to global sign. However, also in
the complex case this has practical relevance and system
design implications when considering linear measurements
on (Re(x), Im(x)) (or (x, x̄)). Our result is deterministic
and uniform, i.e. it guarantees recovery up to a global sign
for any vector x ∈ Cn. Finally, the constant in the stability
result depends only on the sparsity of x indicating a possible
further reduction of the number of observations in the Fourier
domain also in this case.
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