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ABSTRACT
Traditional Finite Rate of Innovation (FRI) theory has consid-
ered the problem of sampling continuous-time signals. This
framework can be naturally extended to the case where the
input is a discrete-time signal. Here we present a novel ap-
proach which uses both the traditional FRI sampling scheme,
based on the annihilating filter method, and the fact that in
this new setup the null space of the problem to be solved is
finite dimensional.

In the noiseless scenario, we show that this new approach
is able to perfectly recover the original signal at the critical
sampling rate. We also present simulation results in the noisy
scenario where this new approach improves performances in
terms of the mean squared error (MSE) of the reconstructed
signal when compared to the canonical FRI algorithms and
compressed sensing (CS).

Index Terms— Finite rate of innovation, sampling the-
ory, sparsity, annihilating filter.

1. INTRODUCTION

FRI sampling theory [1–4] has shown that it is possible to
sample and reconstruct classes of non-bandlimited signals.
Streams of Diracs are the canonical example of FRI signals.
They are not bandlimited but are sparse in time and have a fi-
nite number of degrees of freedom per unit of time, which
is known as the rate of innovation. The final goal of FRI
methods is to retrieve the exact location and amplitude of the
Diracs from a set of samples. In the continuous-time setup,
the signal is filtered and then sampled in order to obtain a
discrete sequence. In [1] the signal is filtered using the sinc
kernel. Authors in [5] present the use of polynomial or ex-
ponential reproducing kernels with the advantage of achiev-
ing perfect reconstruction with compact support kernels. This
framework has recently been extended to arbitrary sampling
kernels with the penalty of not achieving perfect reconstruc-
tion [6]. To some extent, these methods are all based on the
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fact that the Fourier transform of a sum of Diracs is given by
a sum of exponentials. The reconstruction is then based on
estimating exponentials from a sequence of samples, which is
a classical problem in spectral estimation [7, 8].

This framewok can be naturally extended to discrete-time
signals. In this case, the sampling process can be modelled
with a matrix multiplication. The input signal is given by a
high dimensional vector with few non-zero elements. The ac-
quired signal is a vector of lower dimension which is given
by the product of a fat matrix with the input signal. Note that
since the acquisition matrix is fat, the dimension of its null
space is strictly positive. The goal is to reconstruct the sparse
input vector from the acquired samples. Some preliminary
work has already been published where the FRI framework
is applied in the discrete-time setup [9] and is compared to
`1–minimization techniques, which is the traditional recon-
struction approach in the compressed sensing (CS) frame-
work [10, 11]. In this paper we present a novel method that
is based on the annihilating filter that is used in the tradi-
tional FRI framework, but we take advantage of the fact that
in this new context the null space has finite dimension. The
annihilating method requires a root finding step that becomes
unstable in high noise scenarios. This new approach avoids
this root finding step. We show simulation results where the
new finite dimensional FRI method outperforms traditional
FRI and CS.

In Section 2 we describe the annihilating filter method
which is inherently valid for the continuous-time and the
discrete-time cases. If the input signal is discrete, the solution
is mapped to a discrete time grid. In Section 3 we present
our new approach, we first establish the uniqueness of the
solution in the noiseless case, we then present an extension of
the algorithm when noise is present. In Section 4 we present
simulation results and then conlude in Section 5.

2. TRADITIONAL FRI IN DISCRETE-TIME

Let x ∈ CN be a discrete time signal formed by a stream of
K Diracs. The expression in time is given by
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x[n] =

K∑
k=1

ak δ[n− nk], n = 0, 1, . . . , N − 1, (1)

where nk ∈ [0, N − 1] and ak ∈ C \ {0}, for 1 ≤ k ≤ K,
are unknown integer delays and complex valued amplitudes,
respectively. We assume that all delays are distinct and there-
fore the signal x has 2K degrees of freedom. Let us also
assume that we have access to M < N coefficients of the
unitary discrete Fourier transform (DFT) of x. We can ex-
press the sampling process in matricial form as follows

y = Dx, (2)

where y ∈ CM are the available samples and D ∈ CM×N is
a partial Fourier matrix: (D)m,n = exp (−j2πmn/N) /

√
N ,

with m = 0, . . . ,M − 1 and n = 0, . . . , N − 1.
The unitary DFT of x, denoted by x̂ ∈ CN , consists of

the sum of K exponentials

x̂[m] = 1√
N

K∑
k=1

ak e
−jωkm, m = 0, 1, . . . , N − 1, (3)

where ωk = 2π
N nk. The annihilating filter h[m] is a K + 1

taps filter such that (x̂∗h)[m] = 0. The z-transform of h[m] is
given by H(z) =

∑K
m=0 h[m] z−m =

∏K
k=1

(
1− uk z−1

)
,

where uk = e−jωk . H(z) is a polynomial of order K in the
complex variable z with roots at z = uk, that is,H(z)|z=uk

=
0. Note that the K roots are distinct and non-zero, we thus
always have that h[0] 6= 0 and h[K] 6= 0. It can easily be
shown that the sequence x̂[m] is annihilated by this filter:

(x̂ ∗ h)[m] =

K∑
l=0

x̂[m− l]h[l]

= 1√
N

K∑
l=0

K∑
k=1

ak u
m−l
k h[l]

= 1√
N

K∑
k=1

ak u
m
k

(
K∑
l=0

h[l]u−lk

)
︸ ︷︷ ︸

H(z)|z=uk

= 0.

(4)

The annihilating filter method consists of finding the fil-
ter coefficients (h[m])

K
m=0, and estimating the frequencies ωk

from the roots of the polynomial H(z). The filter can be ob-
tained by solving the following linear system


x̂[K] x̂[K − 1] . . . x̂[0]

x̂[K + 1] x̂[K] . . . x̂[1]
...

...
. . .

...
x̂[2K] x̂[2K − 1] . . . x̂[K]



h[0]
h[1]

...
h[K]

 = 0 (5)

It can be shown that if the coefficients x̂[k] satisfy (3), the
Toeplitz matrix in (5) has rank K [12]. Thus, the system has
a unique solution up to an amplitude factor. If we impose
h[0] = 1 we can drop a row of the system and find the unique
solution from only 2K consecutive values of x̂[k]. From the
knowledge of ωk, and since coefficients x̂[k] are linear in ak,
the amplitudes ak are computed from K samples of (3).

This approach is able to perfectly reconstruct the K-
sparse signal x from only 2K coefficients of the DFT of x,
but requires a nonlinear step to find the roots of the annihilat-
ing filter. These can be obtained from the eigenvalues of the
companion matrix. There exist an alternative approach [12]
that do not involve root finding and is based on the matrix pen-
cil method [13]. It is in essence based on the same principle
that is used in the ESPRIT algorithm [14] for the estimation
of directions of arrival of signals in arrays of antennas. This
approach does not explicitly find the roots of a polynomial,
but involves solving a generalized eigenvector problem and
presents similar performances.

In what follows we present a new linear approach for FRI
signal reconstruction. The proposed method is also based on
the annihilating filter method, but it takes advantage of the
fact that the underlying vector x is finite dimensional.

3. FINITE DIMENSIONAL FRI: NEW APPROACH

In the previous section we have shown that we can compute
the annihilating filter coefficients if the number of available
samples M is greater than or equal to 2K. In this section
we assume that the coefficients of the annihilating filter have
already been computed, but we want to avoid the root finding
step. We now present an algebraic approach to reconstructing
the K-sparse vector x.

3.1. Perfect reconstruction in the noiseless scenario

Equation (2), where x is unknown, is an underdetermined
system and therefore the solution is not unique. Among all the
possible solutions we want to find the one that is K-sparse.

Proposition 1. Let x ∈ CN and y ∈ CM be given as in (1)
and (2) respectively. If M ≥ 2K the solution to (2) is unique
and can be found by solving two linear inversions.

Proof. Since M ≥ 2K, we estimate h from (5) but now we
do not compute its roots. We have that D is of full rank M ,
since it is obtained from the firstM rows of the Fourier matrix
FN . Using the pseudoinverse D†, we can retrieve x up to the
null space of D. Note that since FN is an orthogonal matrix,
that is FN FH

N = FH
N FN = IM , the pseudoinverse of D is

directly DH , where the superscript H denotes the Hermitian
transpose of a matrix. We can therefore write

x = DH y +

L∑
l=1

βl nl (6)
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where βl are unknown coefficients, L = N −M is the size of
the null space and nl are L orthonormal vectors that span the
null space of D, that is nl ∈ N(D) where N(D) = {n ∈
CM |Dn = 0}. The natural choice for nl, l = 1, . . . , L, is
to pick the last N −M columns of FH

N . If we premultiply
equation (6) by FN we obtain the Fourier transform of x

x̂ = FN x = FN DH y +

L∑
l=1

βl FN nl. (7)

It can easily be verified that FN DH =

[
IM
0L,M

]
and FN nl =

eM+l, where ei is the i-th vector of the canonical basis. Note
that coefficients βl are exactly the missing coefficients of the
Fourier transform of x. Let define z = FN DH y.

Let S ∈ C(N−K)×(K+1) be the Toeplitz matrix where
the first row is given by coefficients x̂[K], x̂[K − 1], . . . , x̂[0]
and the first column by x̂[K], x̂[K + 1], . . . , x̂[N − 1]. Note
that S is fully specified by vector x̂. In what follows, we
denote by ToeK {·} the operation of building the (N −K)×
(K + 1) Toeplitz matrix from a N × 1 vector in the way we
define matrix S. Since the N coefficients x̂[k] satisfy (3), the
annihilating filter’s system from (5) is also satisfied:

S h = 0. (8)

If we replace the Fourier transform of x with the expres-
sion obtained in (7), matrix S can be expressed as

S = Z +

L∑
l=1

βlEM+l, (9)

where Z = ToeK {z} and Ei = ToeK {ei}. We then replace
(9) in (8), and given that h is known, we can turn the system
of equations in a new problem with L unknowns:

[
EM+1 h . . . EN h

] β1...
βL

 = −Z h. (10)

The first M − K rows of this system are trivially equal
to zero because matrices EM+l are all zero in these rows and
rows of Z h are also equal to zero because they contain the
convolution of exactly K + 1 consecutive coefficients of x̂
with the annihilating filter. Let define A as the remaining
N −M rows of matrix

[
EM+1 h . . . EN h

]
. Matrix A

is of size L× L and is given by

A =



h[0] 0 . . . . . . . . . 0 0
h[1] h[0] . . . . . . . . . 0 0

...
. . . . . .

...
...

h[K] . . . h[1] h[0] . . . 0 0
...

...
. . . . . . . . .

0 0 . . . h[K] . . . h[1] h[0]


. (11)
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Fig. 1: N = 256, M = 32 and K = 16. (a) Signal with K = 16
Diracs. (b) Perfect reconstruction of the signal, in red the original
signal and in blue the reconstruction. (c) Real part of the Fourier
coefficients in black and available samples in red. (d) Real part of
the Fourier coefficients in black and extrapolated coefficients using
the method in Proposition 1, in red.

This is a lower triangular matrix where all the elements in
the main diagonal are non-zero. Moreover, we have imposed
h[0] = 1 when computing the annihilating filter, thus, the
elements of the main diagonal are all equal to one. Matrix
A has therefore rank N − M and the system has a unique
solution.

Remark 1. Proposition (1) shows that it is possible to per-
fectly reconstruct the K-sparse signal x from the critical
number of samples M = 2K without having to compute
explicitly the roots of the annihilating filter.

Remark 2. Samples in y correspond to the lower frequencies
of x̂, but this can be generalized to any M = 2K consecutive
elements of x̂. Moreover, due to the periodicity of the DFT
the samples only need to be consecutive modulo (N).

Figure 1 illustrates the perfect reconstruction of a sparse
signal with K = 16 Diracs. The number of available samples
is equal to the number of degrees of freedom of the signal:
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Fig. 2: Simulation results showing new finite dimensional FRI approach outperforming traditional FRI methods (root finding of the annihi-
lating filter or matrix pencil) and compressed sensing reconstruction. The dimensionality of the input vector is N = 256 and the number of
available samples is M = 64. Simulations performed at different levels of noise (SNR of 5, 10 and 15 dB) and different levels of sparsity K
(horizontal axis). The vertical axis shows the normalized average value of the MSE of the reconstructed sparse vector compared to the true x.

M = 2K = 32. The βl, l = 1, . . . , L coefficients in the proof
of Proposition (1) correspond to the missing coefficients of
the Fourier transform of x and their real parts are illustrated
in Figure 1-(d).

3.2. Noisy case

To make the algorithm more robust to noise we have to in-
crease the number of available samples M and apply some
denoising algorithm to the samples. In the presence of noise
the Toeplitz matrix ToeK {y} is full rank instead of being
rank deficient with rank K. We first denoise vector y apply-
ing an iterative algorithm that finds the closest Toeplitz matrix
of rank K. This iterative algorithm is known as Cadzow de-
noising [15] and have been successfully applied in the FRI
context [2].

The annihilating filter is then estimated computing the to-
tal least squares (TLS) solution that minimizes ‖Y h‖2 sub-
ject to ‖h‖ = 1. In order to reconstruct the sparse vector we
have then to estimate the βl coefficients. In the noiseless case,
the first M −K rows of (10) are equal to zero, but this does
not hold when noise is present. We thus have an overdeter-
mined system that we also solve by computing the TLS solu-
tion. Note that because we have a larger M than the critical
value of 2K, the dimension of the null space L = N −M is
reduced, and thus there are less coefficients βl to be estimated
making the overall algorithm stable in noisy scenarios. From
the estimated coefficients βl and the available samples y, we
build vector x̂ with equation (7) and apply again the Cadzow
denoising algorithm to ToeK {x̂}. The sparse vector x is then
obtained by taking the inverse Fourier transform of x̂.

4. SIMULATION RESULTS

Figure 2 shows simulations results where the new finite di-
mensional FRI approach outperforms traditional FRI meth-
ods and CS reconstruction. Two different approaches have

been tested for the traditional FRI setup. One approach is
to evaluate the annihilating filter polynomial on a grid of N
points and estimate the roots from the local minima of its
absolute value. The second approach is to obtain the loca-
tions by applying the matrix pencil method. In both cases,
the samples have been first denoised applying the Cadzow
denoising algorithm. The CS reconstruction is obtained by
applying basis pursuit denoising [16]. The solution is given
by minx∈CN ‖x‖1 + (1/2ρ) ‖y −Dx‖22 and we have used
the YALL1 implementation [17] with parameter ρ = 10−3.
We improve the CS solution by picking the K largest values.
For each sparsity level K, 10 different distributions for the
locations of the Diracs have been uniformly generated. For
each instance of locations the amplitudes of the Diracs are
drawn from a Gaussian distribution with parametersN (0, 1).
Complex noise is added to vector y. The real and imaginary
parts are drawn from N (0, σ) where σ is adjusted to satisfy
the different SNR levels in the measured samples y. For each
realization of the sparse vector, 100 realizations of noise have
been generated. We thus have 1000 realizations for each level
of sparsity.

The new finite dimensional FRI method clearly outper-
forms the other approaches especially in high noise scenarios
(SNR = 5 dB) and with large values of K where the root find-
ing approach becomes more unstable.

5. CONCLUSIONS

In this paper we have presented a novel method to reconsc-
truct a finite dimensional sparse vectors from partial knowl-
edge of its discrete Fourier transform. We have shown that in
the noiseless scenario perfect reconstruction is achieved with
the critical number of samples. In the noisy case, this method
is more stable and outperforms traditional FRI approaches
and CS because it takes advantage of the fact that the null
space of the underdetermined system is finite dimensional.
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[12] I. Maravić and M. Vetterli, “Sampling and reconstruc-
tion of signals with finite rate of innovation in the pres-
ence of noise,” IEEE Transactions on Signal Processing,
vol. 53, no. 8, pp. 2788–2805, August 2005.

[13] Y. Hua and T. K. Sarkar, “Matrix pencil method for esti-
mating parameters of exponentially damped/undamped
sinusoids in noise,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 38, no. 5, pp. 814–
824, May 1990.

[14] A. Paulraj, R. H. Roy, and T. Kailath, “Estimation of
signal parameters via rotational invariance techniques –
ESPRIT,” in 19th Asilomar Conference on Circuits, Sys-
tems and Computers, 1985, November 1985, pp. 83–89.

[15] J. A. Cadzow, “Signal enhancement–a composite prop-
erty mapping algorithm,” IEEE Transactions on Accous-
tics, Speech and Signal Processing, vol. 36, no. 1, pp.
49–62, January 1988.

[16] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM Journal on Sci-
entific Computing, vol. 20, no. 1, pp. 33–61, 1998.

[17] Y. Zhang, J. Yang, and W. Yin, “YALL1: Your AL-
gorithms for L1,” online at http://yall1.blogs.rice.edu,
2011.

1831


