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ABSTRACT

Recently it has been shown that specific classes of non-
bandlimited signals known as signals with finite rate of in-
novation (FRI) can be perfectly reconstructed by using ap-
propriate sampling kernels and reconstruction schemes. This
exact FRI framework was later extended to an approximate
FRI framework that works with any kernel.

Reconstruction is achieved by recovering all the param-
eters in the parametric model of the incoming signal, hence
it is essential to know the model order (the rate of innova-
tion) to ensure recovery. In view of this, we devise an al-
gorithm for identifying the rate of innovation in order to ex-
tend the current sampling scheme to a universal one which
enables sampling signals with arbitrary FRI using any acqui-
sition device. Our proposed algorithm can effectively iden-
tify the rate of innovation prior to the signal reconstruction
using arbitrary kernels and in different noise levels where we
also show that it achieves the performance predicted by the
Cramèr-Rao bounds.

1. INTRODUCTION

x(t) h(t) = ϕ(−t/T )
T

yn

Fig. 1. A typical sampling set-up.

In a typical sampling set-up as shown in Fig. 1, the input
analog signal x(t) is filtered through h(t) which is an anti-
aliasing filter, then the filtered input signal ys(t) = h(t) ∗
x(t) goes through an analog-to-digital converter (ADC) with
a sampling rate 1/T and outputs samples yn, which are given
by yn = ⟨x(t),ϕ(t/T − n)⟩, where ϕ(t) = h(−tT ) is the
sampling kernel. From the set of samples yn we want to re-
cover x(t) perfectly and uniquely.

Recently it has been shown that it is possible to develop
sampling schemes for classes of signals that are neither ban-
dlimited nor belong to a fixed subspace, but are completely
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specified by a finite number of free parameters per unit of time
and are called signals with finite rate of innovation [1, 2, 3].
Example of such signals include streams of Diracs, streams of
pulses [4], piecewise sinusoidals [5] and planar polygons [6].

In traditional FRI, the sampling kernel cannot be arbitrary
but needs to satisfy certain properties that depend on the rate
of innovation of the analogue signal. For example, if the in-
coming signal is a stream of Diracs with at most K Diracs
per unit of time, the rate of innovation is ρ = 2K and the
kernel is designed so that any stream of Diracs with ρ ≤ 2K
can be reconstructed. However normally the same kernel can-
not reconstruct signals with ρ > 2K even if we increase the
sampling rate.

In this paper, we use and extend the results in [7] in or-
der to devise a method for sampling streams of Diracs with
unknown rate of innovation and using arbitrary kernels. We
show numerically that in close to noiseless setups we can re-
trieve K Diracs per unit of time when the sampling rate is
1/T ≥ c · 2K , where we find c = 1.6 empirically. This
is achieved by first estimating the rate of innovation of the
signal and then reconstructing it. If ρ > 1/T then reliable
reconstruction is achieved by increasing the sampling rate but
crucially without the need of changing the kernel. The al-
gorithm is also effective in noisy scenarios where we show
that it achieves the performance predicted by the Cramér-Rao
bounds.

The paper is organised as follows: in Section 2 we pro-
vide an overview of the theory of sampling signals with FRI,
we show that streams of Diracs can be perfectly reconstructed
with specific sampling kernels. We then present in Section 3
the approximate framework and how we use it together with
our proposed algorithm to enable universal sampling of sig-
nals with arbitrary FRI and using arbitrary kernels. Simula-
tion results are shown in Section 4. Finally we conclude in
Section 5.

2. OVERVIEW OF FINITE RATE OF INNOVATION
THEORY

Consider the sampling set-up in Fig. 1. We introduce a spe-
cific class of sampling kernels that allows perfect recovery of
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x(t) from the samples yn. This is the family of exponential re-
producing functions where any family member ϕ(t) together
with its shifted versions can reproduce complex exponentials:

∑
n∈Z

cm,nϕ(t− n) = eαmt, m = 0, 1, . . . ,M (1)

for proper coefficients cm,n. It is possible to show that a func-
tion satisfies (1) if and only if it meets the generalised Strang-
Fix conditions:

ϕ̂(αm) ̸= 0 and ϕ̂(αm + j2πl) = 0 l ∈ Z\{0} (2)

where ϕ̂(s) is the bilateral Laplace transform of ϕ(t).
Note that the exponential reproducing kernels most robust

to noise are called exponential-MOMS (e-MOMS) and where
introduced in [8].

An important characteristic of the exponential reproduc-
ing kernel is that it allows us to map the samples yn with the
Laplace or Fourier transform of x(t) at {αm}Mm=0 and this in-
dependently of the input signal. Assume that the signal x(t)
is of compact support such that it is characterised by only N
non-zero samples. Consider the following weighted sum of
these samples, where the weights cm,n are those in (1) that
reproduce eαmt:

sm =
∑
n

cm,nyn

= ⟨x(t),
∑
n

cm,nϕ(t− n)⟩

=

∫ ∞

−∞
x(t) eαmtdt, m = 0, 1, . . . ,M.

(3)

Note that
∫∞
−∞ x(t) eαmtdt is exactly the bilateral Laplace

transform of x(t) evaluated at {αm}Mm=0 and denoted by
x̂(αm). Moreover, when αm is purely imaginary, x̂(jωm) is
the Fourier transform of x(t) at ω = ωm.

When x(t) is a specific class of signals with FRI and αm

is chosen to be of the form αm = α0 + mλ, it is possible
to establish a one-to-one mapping between x̂(αm) and x(t).
For example, if x(t) =

∑K−1

k=0
akδ(t − tk) is a stream of K

Diracs located at tk then the weighted sum of the samples

sm =
∑
n

cm,nyn

=

∫ ∞

−∞

K−1∑
k=0

akδ(t− tk) e
αmtdt

=
K∑

k=0

âku
m
k , m = 0, 1, . . . ,M,

(4)

is a sum of exponentials, where âk = ak eα0tk and uk = eλtk .
Retrieving {âk, uk}

K−1

k=0
from {sm}Mm=0 is a classical prob-

lem in spectral estimation and can be solved by Prony’s

method (annihilating filter method [1, 3]). For noisy FRI
signal retrieval, Cadzow method [9] and matrix pencil [10] is
proven to be effective.

We also note that this formulation requires the acquisition
device to behave like exponential reproducing function and
its order must be equal to or larger than the rate of innovation
of the signal with FRI, specifically, for this example M ≥
2K−1. This means that if the incoming signal has more than
K Diracs, e.g. K ′ > K , it cannot be reconstructed with this
kernel and this even when N ≥ 2K ′.

In the next section we show how to overcome this limita-
tion.

3. UNIVERSAL SAMPLING OF SIGNALS WITH

FINITE RATE OF INNOVATION

3.1. FRI Sampling using Arbitrary Kernels

In the previous section, we have shown that the reconstruc-
tion of FRI signals with specific rate of innovation is depen-
dent on proper design of the acquisition devices. Recently,
the FRI sampling theory has been extended so that any acqui-
sition device can be used [7].

Consider an arbitrary kernel ϕ(t). We want to find a lin-
ear combination of ϕ(t) with its shifted versions that provides
the best approximation to a specific exponential, more specif-
ically, find coefficients cn such that:

∑
n∈Z

cnϕ(t− n) ≈ eαt . (5)

This approximation is exact only when the kernel ϕ(t) satis-
fied the generalized Strang-Fix condition. For any other func-
tion, the coefficients cn that best fit (5) are desired.

For the sake of clarity, we use cn = c0 eαn and then we
can show that the error in approximating the exponential is:

ϵapprox(t) = eαt[1− c0
∑
l∈Z

ϕ̂(α+ j2πl) ej2πlt]. (6)

Note that if the Laplace transform of ϕ(t) decays sufficiently
quickly, we can assume the terms ϕ̂(α + j2πl) are close to
zero for l ∈ Z\{0}. In this case, the approximation error is
minimised when cn = ϕ̂(α)−1 eαn, requiring only the knowl-
edge of ϕ(t) at α.

Recall that in the exact reproduction framework, the num-
ber of exponentials we can reproduce is dependent on the or-
der of the sampling kernel and that an acquisition device may
be no longer usable when the rate of innovation of an incom-
ing signal exceeds the kernel’s order. In contrast, in [7] we
notice that for the approximate framework, N samples can
give us N approximate exponentials and this directly relates
the highest rate of innovation it can recover to the sampling
rate rather than the order of the kernel. Hence any acquisi-
tion device is always usable for signals with arbitrary rate of
innovation below the sampling rate.
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3.2. Identification of the Rate of Innovation

We have shown that the approximate FRI theory allows us to
sample FRI signals using any sampling kernel. Together with
the algorithm we are going to propose for identifying the rate
of innovation, we will extend the current sampling scheme
to a universal one which can recover signals with arbitrarily
unknown finite rate of innovation using any sampling kernel.

The general idea behind our algorithm is as follows.
Given cN (c > 1) samples of the input stream of Diracs yn,
we are able to obtain cN approximated Fourier coefficients
x̂(αm),m = 1, . . . , cN . From these coefficients we estimate
at most N/2 number of Diracs. Note that theoretically N
samples is enough for recovering N/2 Diracs, but in reality
we require a slightly higher number of samples per unit time
since the Fourier coefficients are all approximated.

We first assume that the number of the Diracs is p = 1
and we retrieve the location and amplitude of the Dirac in the
parametric model

∑p
k=1

akδ(t − tk). Next we resynthesize
the samples and compute the error on the resynthesized sam-
ples with respect to yn. Then we repeat this procedure but
with assumption that p is 2, 3 up to N/2.

We expect that the error on the samples will first decrease
gradually when the number of Diracs p we assumed approach
the true numberK and will eventually reach nearly zero when
p is exactly the number of the Diracs. When we further in-
crease p, the errors will either rise slightly or further decrease
with a much slower rate. In either case, the turning point can
be recognised from the second derivative of the error. Once
the number of Diracs K is known, the input signal x(t) can
be recovered using the parametric model with correct order.

We summarize the algorithm as follows:

Algorithm 1: Reconstruction of a stream of unknown
number of Diracs

Data: cN samples yn = ⟨x(t),ϕ(t − n)⟩
Result: Estimation of the number of Diracs K and

corresponding reconstruction of the Diracs
x̃(t)

1 Obtain cN Fourier coefficients x̂(αm) from {yn}cNn=1;
2 for Assumed number of Diracs p = 1 . . .N/2 do

3 Estimate location(s) t̃k and amplitude(s) ãk of p
Diracs from yn (with Cadzow method and matrix
pencil);

4 Resynthesize the samples

ỹn = ⟨
∑p

k=1
ãkδ(t− t̃k),ϕ(t− n)⟩;

5 Compute the error ϵp = ∥ỹn − yn∥;

6 end

7 Compute second derivative ϵ′′p of the error function

interpolated from {ϵp}Pp=1;

8 Choose for K the number of Diracs p corresponding to
the largest ϵ′′p . Then x̃(t) is the reconstructed stream of

Diracs corresponding to the model
∑p

k=1
ãkδ(t− t̃k);

4. SIMULATIONS

4.1. Universal Sampling in the Absence of Noise

In this section, we show that our proposed algorithm is univer-
sal in that any acquisition device can be used for sampling and
any unknown number (K) of Diracs can be recovered almost
perfectly with a sampling rate 1/T ≥ 2cK , where c = 1.6 in
our simulations.

Assume we have a stream of unknown number K of
Diracs and we take cN samples with a B-spline of order
5 following the scheme in Fig. 1. In the exact framework,
this specific acquisition device restricts the number of Diracs
we can reconstruct to 3. Thanks to the approximate Strang-
Fix framework, with a B-spline of order 5 we can build cN
approximated Fourier coefficients which allows us to recon-
struct 1 up to N/2 Diracs. In Fig. 2(a,b) we show that by
using our proposed algorithm the number of Diracs K = 31
is identified from cN = 99 samples, and then all the 31
Diracs are almost perfectly reconstructed in the absence of
noise.

We also highlight the universality of the sampling scheme
that even if the input streams of numbers of Diracs changes,
for example in Fig. 2(c,d) where K changes from 31 to 21,
reliable reconstruction can still be achieved without the need
of changing the set-up.

−0.5 0 0.5−1
0
1
2
3 Input Signal x(t): Number of Diracs K = 31

−0.5 0 0.50

1

2
99 noiseless samples, B−spline of 5th order

−0.5 0 0.5−1
0
1
2
3

31 Diracs are reconstructed 
from 99 approximated moments

(a) 31 Diracs are reconstructed from
99 samples in noiseless case.
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(b) K = 31 is identified.
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(c) 21 Diracs are reconstructed from
99 samples in noiseless case.
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Fig. 2. Universal sampling of a stream of unknown number
of Diracs using B-spline kernel of order 5 in the absence of
noise. (b)(d) The number of Diracs is identified from second
derivative of the error function. (a)(c) All the Diracs are re-
trieved almost perfectly.
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4.2. Universal Sampling in the Presence of Noise

In the following simulations we show that the algorithm is
also effective in noisy scenario since it achieves the perfor-
mance given by the moment-based Cramér-Rao bounds [7].
Here the noise is added to the samples yn and is white Gaus-
sian noise of variance σ, chosen according to the target signal-

to-noise ratio defined as SNR(dB)= 10 log ∥y∥2

Nσ2 . Note that in
this sampling scheme, a larger sampling rate corresponds to
more robust reconstruction, so in the noisy scenario we use a
sampling rate 1/T larger than what we used in the noiseless
case, i.e. 1/T = 2c′K > 2cK .

We now compute the Cramér-Rao bound for the situation
where there are two Diracs with same amplitude sampled at
the rate 1/T = 31. Fig. 3(a) shows that the observed standard
deviation given by the FRI reconstruction algorithm in gen-
eral reaches the theoretical minimum given by Cramér-Rao
bounds for distances d beyond the critical values, which are
the intersects of the bounds and the line d = 2 × 3σCRB in
Fig. 3(a).

For distances smaller than the critical values, it is possible
that these two Diracs are indistinguishable and the FRI recon-
struction algorithm reconstruct them as one tall Dirac situated
in between the true Diracs and one Dirac far away from the
true Diracs with negligible amplitude. This is not surpris-
ing. We can see from Fig. 3(b) that when the two Diracs get
closer, the uncertainty σCRB on the locations increases. When
the distance reaches the critical value 2 × 3σCRB, in which
case the “three-sigma” uncertainty on the location of the first
Dirac overlaps that of the second one, the two Diracs are pos-
sibly indistinguishable. In this situation, our algorithm for
identifying the number of Diracs, which is based on the FRI
reconstruction algorithm, will neglect the one with negligible
amplitude and identify only one Dirac.
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(a) FRI algorithm reaches CRB for
distances beyond the critical values.

(b) scatterplot of the locations in
20dB noise.

Fig. 3. (a) observed standard deviation compared to Cramér-
Rao lower bounds on the location of one of the two Diracs.
(2000 realisations for each distance) (b) scatterplot of re-
trieved locations compared to 3 times the standard deviation
given by Cramér-Rao lower bounds.

The results in Fig. 4 are also consistent with our observa-
tion regarding Cramér-Rao bounds in Fig. 3. In this exam-

ple, there are 8 Diracs sampled at 1/T = 31, in which two
Diracs are close to each other and the others are well sep-
arated. We notice that all the 8 Diracs are accurately recon-
structed in 20dB noise. In 10dB noise, however, the algorithm
recognises the number of Diracs as K = 7 and the two close
Diracs, whose distance, 0.046, is smaller than the critical dis-
tance 0.055 given by the Cramér-Rao bounds, as one Dirac.
Nevertheless, we highlight that this can be easily solved by in-
creasing the sampling rate where the Cramér-Rao bound and
the critical distance will decrease.
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Fig. 4. Universal sampling of a stream of unknown number
of Diracs using B-spline kernel of order 5 in the presence of
noise. Two close Diracs in the 8 Diracs are recognised as one
Dirac in 10dB noise and the others are accurately retrieved.

To conclude, our proposed algorithm is able to identify the
model order correctly and is consequently able to reconstruct
all the stream of Diracs almost perfectly in the absence of
noise. In the noisy situation the algorithm achieved the best
possible result as indicated by the Cramér-Rao bounds.

5. CONCLUSION

In this paper we have shown how to sample FRI signals
with arbitrary kernels and that a novel algorithm can identify
the model order accurately prior to reconstruction. Simula-
tion results have confirmed the effectiveness of the proposed
method.
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