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ABSTRACT

This paper analyses the estimation process for Finite Rate of
Innovation (FRI) signals. The main contribution is the deriva-
tion of the well known Cramér-Rao Bound (CRB) for the es-
timation of signal parameters for a pulse stream. Other publi-
cations consider the estimation of the signal instead of its pa-
rameters or omit the effect of sampling. In this contribution
both effect are considered and analytical expressions for the
Fisher Information Matrix are obtained. Furthermore, for the
estimation of parameters of a single pulse analytical expres-
sions for CRB are given and for the case of multiple pulses
dependencies of the CRB of the distance between the pulses
are illustrated.

Index Terms— Finite Rate of Innovation, FRI, spectral
estimation, minimum error variance, Cramér-Rao Bound,
CRB, CRLB

1. INTRODUCTION

At the beginning of the last decade a new branch of sampling
methods arose denoted as Compressed Sensing. The pioneer-
ing works of Donoho [1], Candés, Tao et al. [2–5] laid with
their theory the foundation for CS. The basic principle is quite
easy: if a signal is spare, you do not have to sample at the sig-
nal’s Nyquist rate.
In parallel, Vetterli et al. [6–11] presented their ideas for sam-
pling of signals which are sparse in their parametric descrip-
tion. Such signals can be described by a finite set of param-
eters per interval and are, therefore, called Finite Rate of In-
novation (FRI) signals. For both approaches, CS and FRI sig-
nals, a comprehensive overview can be found in [12].
This paper will deal with the second approach. In general,
FRI signals are not restricted to a certain bandwidth and sam-
pling according to the Shannon-Nyquist sampling theorem
[13] will not be possible. For example, a stream of K diracs
per interval is completely described by their amplitudes and
positions. Therefore, such a process has an FRI of 2K per
interval but it cannot be sampled appropriately. After lowpass
filtering sampling according to the sampling theorem will be
possible. Early publications dealt with Gaussian or ideal low-
pass filters [6–11]. However, the Gaussian lowpass leads to
numerical problems during the reconstruction of the signal
parameters and the ideal lowpass suffers from its infinitely

long impulse response. Both problems have been solved by
Eldar et al. [14,15] introducing the Sum of Sincs (SoS) kernel
(as shown in Sec. 2).
Since the theory shows that the reconstruction of signal pa-
rameters will be exact, we will analyse the reconstruction per-
formance under noisy conditions. First results for the Cramér-
Rao Bound (CRB) in [16] show the minimum error variance
for different system setups with continuous or sampled mea-
surements for the reconstruction of the signal. Further results
in [17] show the CRB for the parameter estimation but are
restricted to a single pulse. In this paper the results are ex-
tended for multiple pulses and dependencies between the po-
sitions of different pulses will be shown. In the sequel, Sec. 2
will present the system design necessary to derive the CRB in
Sec. 3. Finally, we compare the CRB with results obtained by
parameter estimation with spectral estimation methods.

2. SYSTEM DESCRIPTION

2.1. FRI Signals & Sampling Scheme

An analogue FRI signal of the form

s (x) =

K−1∑
k=0

ck · h (x− xk) (1)

is assumed where K pulses at positions xk with amplitudes
ck and a common impulse response h (x) are superposed. All
pulse positions are restricted to a certain interval, xk ∈ [0, τ).
Therefore, s (x) can be interpreted as an FRI signal with a
rate of innovation of 2K

τ . This model can be extended easily
for the 2-D case [18].
Transforming s (x) into the spectral domain delivers

S (f) = H (f) ·
K−1∑
k=0

ck · e−j2πfxk . (2)

The bandwidth of the considered FRI signal is assumed to
be infinitely high and, therefore, sampling according to the
sampling theorem will be infeasible. To avoid aliasing effects
by sampling with finite rate, the FRI signal is transformed
into a lowpass signal by convolution with a lowpass sampling
kernel g (x).

r (x) = s (x) ∗ g (x) (3)
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2.2. SoS Sampling Kernel

For lowpass filtering the SoS kernel as proposed in [16] is
applied. Equivalent to Orthogonal Frequency Division Mul-
tiplexing (OFDM) systems in communications, e.g. in [19],
multiple sinc functions are arranged in the spectral domain
such that they do not interfere with each other at discrete fre-
quencies f = k/τ ∀ k ∈ Z.

G (f) =τ
∑
l∈L

α [l] · sinc (f · τ − l) (4)

The different sinc functions are weighted with non-zero fac-
tors α [l] and shifted to positions defined by set L containing
consecutive integers. The total number of sincs is obtained
by the cardinality of the set, |L|. Considering the zeros of the
different sincs one can see that

G (f) = τ ·


α [l] 6= 0 f · τ ∈ L
0 f · τ ∈ Z\L
else arbitrary

(5)

holds. Transforming the kernel into the original domain deliv-
ers a superposition of complex exponentials (frequency shift)
which are windowed by a rectangular function (obtained by
the sincs).

g (x) = rect
(x
τ

)
·
∑
l∈L

α [l] ej2πlx/τ (6)

To allow a reconstruction of the unknown signal parameters
at least 2K spectral coefficients are required. Thus, the set L
should contain at least that many elements, respectively the
filter kernel that many shifted sincs. Furthermore, a real val-
ued kernel g (x) is desired. Therefore, kernelG (f) should be
symmetric around zero. For this reason we define

L =

{
−|L| − 1

2
, ...,
|L| − 1

2

}
(7)

where |L| has to be an odd integer and the filter coefficients
have to be pairwise conjugate complex, α [l] = α∗ [−l].

2.3. Sampling, Bounds & Reconstruction

After convolution the signal bandwidth is changed according
to G (f) to a lowpass characteristic but still not limited and
equidistant sampling at the rate M

τ with M ∈ {N |M ≥ |L| }
leads to shifted copies at integer multiples of the sampling
frequency. These copies lead to aliasing expect at discrete
frequencies f · τ ∈ L where the shifted copies have their
zeros as well (5). Thus, the spectral description at discrete
frequencies f ·τ ∈ L remains without aliasing after sampling.
The samples can be described by

r [m] = (s ∗ g)
(
x =

m

τ

)
. (8)

Transforming these samples into the spectral domain the Dis-
crete Fourier Transform (DFT) will be exploited where a con-
volution corresponds to a multiplication in the spectral do-
main

R [m] = G [m] · S [m]

= G [m] ·H [m] ·
K−1∑
k=0

ck · e−j2πm
xk
τ (9)

if either the signal s (x) is periodic, s (x) = s (x+ τ) or if
the convolution in (3) is circular, r (x) = s (x)~ g (x).
The discrete spectral coefficients can be considered to esti-
mate the unknown positions. On the one hand this can be done
via a linear equation system known as the Annihilating Fil-
ter method [6–9, 11] (also known as High Order Yule-Walker
system or Prony’s method). On the other hand more com-
plex spectral estimation algorithms such as the Estimation
of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) algorithm [20–22] or Unitary ESPRIT [23] can be
used. To estimate the positions via the phases of K super-
posed exponentials (9) at least 2K non-zero coefficients are
required, |L| ≥ 2K. Furthermore, to avoid aliasing sam-
pling has to be done according to the sampling theorem with
M ≥ |L|. Under the restriction that |L| has to be an odd
integer this leads to

M ≥ |L| ≥ 2K + 1 . (10)

2.4. Noise

Up to now the theory has been presented under ideal condi-
tions neglecting noise at any kind of sensing device, quan-
tisation noise at the sampling stage or errors at the spectral
estimation stage due to limited numerical precision. In this
paper we consider noisy samples of the form

r̃ [m] = r [m] + z [m] (11)

where z [m] is assumed to be Additive White Gaussian Noise
(AWGN) with variance σ2

Z. Thus, the spectral coefficients
considered for the estimation process will suffer from noise
as well.

R̃ [m] = R [m] + Z [m] (12)

For these conditions the reconstruction result depends signif-
icantly on the noise variance, the design of the SoS kernel as
well as on the sampling rate.

3. CRAMÉR-RAO BOUND

To evaluate whether the unknown signal parameters θ =
[c0, ..., cK−1, x0, ..., xK−1] can be estimated reliably from
noisy measurements the well known Cramér-Rao Bound
(CRB) will be considered. The theory can be found in many
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textbooks such as [24].
The minimum error variance achievable by an unbiased esti-
mator is given by the diagonal elements of the inverse of the
Fisher Information Matrix (FIM) J (θ).

MSE
(
θi, θ̂i

)
≥
[
J (θ)

−1
]
i,i

(13)

Here, subscript i denotes a certain element of a vector or ma-
trix and variables with a hat denote the estimate of the same
variable. For the case of AWGN the elements of the FIM can
be determined by [24, (3.31)]

[J (θ)]k,κ =
1

σ2
Z

M−1∑
m=0

(
∂r [m]

∂θk

)(
∂r [m]

∂θκ

)
(14)

and, of course, the FIM is symmetric since [J (θ)]k,κ =
[J (θ)]κ,k holds. For the proposed system it is beneficial to
determine the partial derivation by the spectral representation
of the samples r [m] where we assume h (x) = δ (x) and,
therefore, H [m] = 1.

r [m] =

K−1∑
k=0

ck
∑
l∈L

G [l] · ej2πlmM · e−j2πl
xk
τ (15)

First, we determine the derivations with respect to any ampli-
tude ck and position xk.

∂r [m]

∂ck
=
∑
l∈L

G [l] · ej2πl(
m
M−

xk
τ ) (16)

∂r [m]

∂xk
= ck

∑
l∈L

−j2πl
τ

G [l] · ej2πl(
m
M−

xk
τ ) (17)

Second, we determine the elements of the FIM by summing
up the products of different derivatives according to (14). In
the following the superscripts denote according to which vari-
ables the derivatives were calculated.

[J (θ)]
(ck,cκ) =

1

σ2
Z

·
M−1∑
m=0

(∑
l∈L

G [l] · ej2πl(
m
M−

xk
τ )

)

·

(∑
ι∈L

G [ι] · ej2πι(
m
M−

xκ
τ )

)
(18)

By interchanging the sums and combining the exponential
function one can obtain the following expression.

[J (θ)]
(ck,cκ) =

1

σ2
Z

·
∑
l∈L

∑
ι∈L

G [l] ·G [ι]

· e−j2π
lxk+ιxκ

τ · ej2π(l+ι) − 1

ej2π(l+ι)
1
M − 1

(19)

The numerator of the last fraction will always be zero since
l, ι ∈ L ⊂ Z. For the case of l = −ι the denominator be-
comes zero as well. As long as M ≥ |L| holds no other

cases arise where the denominator becomes zero. However,
for these cases L’Hôpital’s rule show that the last ratio equals
M .

[J (θ)]
(ck,cκ) =

M

σ2
Z

·
∑
l∈L

G [l] ·G [−l]

· e−j2πl
xk−xκ
τ (20)

Exploiting that the filter kernel is symmetric around zero
G [l] = G∗ [−l] the complex exponentials can be combined
to cosine terms.

[J (θ)]
(ck,cκ) =

M

σ2
Z

· |G [0]|2

+
M

σ2
Z

·

|L|−1
2∑
l=1

|G [l]|2 · 2 cos
(
2πl

xk − xκ
τ

)
(21)

In the same fashion the remaining elements of the FIM can be
determined.

[J (θ)]
(xk,xκ) =

4π2M

τ2
· ckcκ
σ2
Z

·

|L|−1
2∑
l=1

l2 · |G [l]|2 · 2 cos
(
2πl

xk − xκ
τ

)
(22)

[J (θ)]
(xk,cκ) =

2πM

τ
· ck
σ2
Z

·

|L|−1
2∑
l=1

l · |G [l]|2 · 2 sin
(
2πl

xk − xκ
τ

)
(23)

Discussion
In general, for all main diagonal elements of the FIM, i.e.
[J (θ)]

(ck,ck) and [J (θ)]
(xk,xk), the cosine terms equal one.

Furthermore, all elements of the form [J (θ)]
(xk,ck) become

zero due to the sine term. The terms of squared amplitudes
divided by the noise variance can be interpreted as Signal to
Noise Ratio (SNR). In addition, changing the kernels coeffi-
cients α [l] leads to a variation of the CRB.
For the single pulse FRI signal, K = 1, the FIM becomes a
diagonal matrix and the minimum error variance can be de-
termined as simple as shown in [17].

MSE (c0, ĉ0) ≥ [J (θ)]
−1
c0,c0

=
σ2
Z

M ·
∑
l∈L
|G [l]|2

MSE (x0, x̂0) ≥ [J (θ)]
−1
x0,x0

=
τ2σ2

Z

4π2Mc20 ·
∑
l∈L

l2 · |G [l]|2

Here, the minimum error variance is proportional to the SNR
and decreases with the number of samples. Increasing the
kernel bandwidth the minimum error variance decreases.
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Fig. 1. CRB for two-pulse FRI signal, unit power filter kernel,
M = 21

For multiple pulse FRI signals the solutions is not that obvi-
ous since the inverse FIM has to be determined which is no
longer a diagonal matrix but numerical results can be obtained
easily. The distance between different pulses has an impor-
tant role as the sine and cosine terms scale the error variance
as shown in Sec. 4. The dependencies of the CRB of M , σ2

Z

and the kernel remain equal in quality.

4. NUMERICAL EVALUATION

This section numerically evaluates the results obtained for the
CRB. For Fig. 1 two pulses, K = 2, are assumed with un-
known amplitudes c0 = c1 = 1. The figure shows a strong de-
pendencies of the achievable estimation performance depen-
dent on the filter kernel and the distance between the pulses.
Increasing the kernel bandwidth leads to steeper slopes for
kernel shape g (x) and closely located pulses can be well sep-
arated. Furthermore, if the distance between the two pulses
is too small, their position cannot be reliably estimated any
more. The illustrated CRB is symmetric around 0.5 due to
the periodicity of the problem. In addition, the achievable
error floor decreases with L due to additional spectral coeffi-
cients which help to suppress noise. The results for the esti-
mation performance of the amplitudes are not presented here
but show a similar dependency of filter bandwidth, sampling
rate and distance to each other.
Increasing the number of pulses leads to additional depen-
dencies between the pulses dependent on the distance to each
other. The result will be similar: whenever two pulses are
closely located they cannot be estimated reliably but increas-
ing the bandwidth, namely parameter |L|, allows smaller dis-
tances between the impulses at the same estimation perfor-
mance. If two out of K pulses are closely located, K − 2
pulses can still be estimated reliably when the dimension for
the estimation algorithm is changed to K − 1. Then two
closely located pulses will be estimated as one single pulse.
In Fig. 2 additional results show a comparison between sim-
ulation results and the analytically obtained CRB. For these
results K pulses have been generated in 104 random realisa-
tions where the samples are disturbed by AWGN. For each
realisation, on the one hand, the CRB has been determined

10−20 10−16 10−12 10−8 10−4 100
10−15

10−8

10−1

σ2
Z →

M
SE

(x
k
,x̂
k
)
→

K = 1
K = 5

Fig. 2. Comparison of simulation results (via ESPRIT, black)
and CRB (grey) for K pulses, |L| = 2K+1, unit power filter
kernel, M = |L|.
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10−10

100

x4 →
M

SE
(x
k
,x̂
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)
→

Fig. 3. Comparison of simulation results (via ESPRIT, black)
and CRB (grey); K − 1 = 4 pulses on fixed positions (cir-
cles); x4 changes on x-axis; solid lines: MSE dependent on
x4; dotted lines: average of MSE for all positions x4; dashed
lines: MSE by omitting x4; M = |L| = 11; σ2

Z = 10−15

and on the other hand, the positions have been estimated via
the ESPRIT algorithm. It can be seen that the results differ
significantly as K increases. For many realisations of the FRI
signal the illustrated CRB can also be achieved for K = 5.
However, in average this is not the case since few realisations
with very closely located pulses results in a higher MSE than
the CRB promises. Fig. 3 illustrates that behaviour for a real-
isation of four pulses with a fifth pulse changing its position
x4. By comparing the solid lines for ESPRIT and CRB it can
be seen that the trends of both curves equal but for closely lo-
cated pulses, when the FIM is close to singular, the result for
ESPRIT is significantly higher than for the CRB. In average,
this results in a higher MSE as illustrated by the dotted lines.
Performing the same simulation without a fifth pulse and if
the distances between the remaining pulses are sufficiently
high enough, the CRB can almost be achieved by ESPRIT as
the dashed lines show. Summarising, with a certain distance
between the pulses ESPRIT can achieve the same results as
the CRB for all noise powers.

5. CONCLUSION

In this paper it is shown how the CRB can be derived for
the estimation of signals parameters of a sampled FRI signal.
Furthermore, the dependencies of the CRB of the system de-
sign and the FRI signal realisation is shown.
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