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ABSTRACT

The problem of efficient sampling of wideband Radar signals for
Electronic Support Measures (ESM) is investigated in this paper.
Wideband radio frequency sampling generally needs a sampling rate
at least twice the maximum frequency of the signal, i.e. Nyquist rate,
which is generally very high. However, when the signal is highly
structured, like wideband Radar signals, we can use the fact that
signals do not occupy the whole spectrum and instead, there exists
a parsimonious structure in the time-frequency domain. Here, we
use this fact and introduce a novel low complexity sampling sys-
tem, which has a recovery guarantee, assuming that received RF
signals follow a particular structure. The proposed technique is in-
spired by the compressive sampling of sparse signals and it uses a
multi-coset sampling setting, however it does not involve a com-
putationally expensive reconstruction step. We call this here Low-
Complexity Multi-Coset (LoCoMC) sampling technique. Simula-
tion results, show that the proposed sub-Nyquist sampling technique
works well in simulated ES scenarios.

Index Terms— Sub-Nyquist Sampling, Compressive Sampling,
Electronic Surveillance, Electronic Support Measures, Wideband
Radar

1. INTRODUCTION

In electronic surveillance, we need to monitor a wide frequency
band, where the Radar and communication signals occupy different
bands. It has been considered for many years and various solutions
have already been proposed. Early solutions used instantaneous fre-
quency measurements (IFM) to detect and categorize RF signals, see
for example [1]. However, such systems have limited sensitivity and
cannot sort multiple signals simultaneously. In more recent years,
digital receivers have been preferred due to their ability to process a
wider range of signals including Frequency Modulated Continuous
Wave (FMCW) radar signals and other Low Probability of Intercept
(LPI) radar signals. However, size weight and power (SWAP) re-
quirements impose limitations on the sampling rates and hence the
bandwidths that are viable for such digital receivers.

An alternative approach to wideband sampling, which has re-
ceived much interest recently, is to use a sub-Nyquist sampling strat-
egy that allows subsequent reconstruction of the signal under certain
assumptions, such as sparsity. The earliest such system was pro-
posed by Feng and Bresler [2] and exploited a multi-coset (MC)
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sampling strategy: a parallel bank of sub-Nyquist sampling chan-
nels, each with their own unique delay. Signal reconstruction is pos-
sible as long as the number of active subbands is less that the num-
ber of multi-coset channels. Identification of the active subbands
is achieved using a variant of the MUSIC algorithm [3] which in-
volves a computationally expensive eigenvalue decomposition and
requires an accumulation of sufficient samples to calculate an ac-
curate cross channel covariance matrix. Multi-coset sampling was
revisited by Mishali and Eldar in [4] where variations of standard
compressed sensing algorithms were proposed for signal reconstruc-
tion. Other sub-Nyquist sampling strategies have also been proposed
based on the ideas of compressed sensing [5]. For example, Random
Demodulation (RD) sampling strategies using spread spectrum tech-
niques similar to those in telecommunications have recently been
proposed [6, 7]. However, as in [4], the reconstruction technique
proposed for all these systems are iterative and they are thus compu-
tationally expensive, which does not allow us to use them for large
scale problems like ESM, see [8] and reference therein for the set-
ting of digital ESM problem. MacKerron et al. in [9], proposed a
technique to break the large scale reconstruction problem to a series
of small size problems. Such a technique will be more efficient, if
we have some techniques to solve small problems quickly. If we use
greedy algorithms for this purpose, the process is still iterative.

We here propose an implementation of a wideband sub-Nyquist
rate receiver, which is able to acquire and efficiently reconstruct sig-
nals that have an approximate disjoint aliased TF support, using a
very simple pipelined process. The new signal model can accommo-
date to a wide range of TF-sparse signals. ESM is the application
that we have focused here and leave the generalisation to other ap-
plications for a future work.

2. SUB-NYQUIST SAMPLING SYSTEM PROPOSAL

We initially introduce our sampling framework and mathematically
formulate its operation here. The sampling structure is composed of
two separate parts: the analog circuit, i.e. digitiser, and the digital
processing unit. The digitiser consists of a bank of parallel delayed
signals, with distinguished delays, each sampled with a fixed rate
lower than Nyquist. Signals of different channels are called cosets
and the whole system is called a multi-coset sampling scheme [2].
Unlike the work of Feng and Bresler [2] or Mishali and Eldar [4], we
propose a receiver which can even be implemented with as few as
two multi-coset channels, while increasing the number of channels,
increases the robustness of the sampling technique to the noise.

The digital component of the receiver is composed of a digital
fractional delay (DFD) filter and a Time Frequency (TF) transform
per channel followed by a joint detection and de-aliasing step. The
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Fig. 1. The proposed sub-Nyquist sampling system (LoCoMC).

whole process can be pipelined and is non-iterative. It is therefore
ideally suitable for a low SWAP implementation. A complete system
diagram is shown in Figure 1 and consists of the following elements.
The input signal x(t) is sampled using a bank of sub-Nyquist sample
and hold devices, each sampling at L times lower than the Nyquist
rate 1/T . Prior to the sample and hold, each channel is delayed by
a unique time delay of ciT seconds. Following track and hold, the
signal is digitized using an Analog to Digital Converter (ADC) for
subsequent digital processing and analysis.

2.1. Mathematical Formulation

Consider an input signal, x(t). Following [2], examination of the ith
channel shows that the input signal, x(t), sampled at a rate of 1/LT
can be written as yi[n] = x((nL+ci)T ). For simplicity of notation,
we assume that the support of the Fourier transform of x(t), denoted
by X(ω), is essentially band-limited to [0, 2π/T ]. Plainly speaking,
essentially band-limited functions have negligible out of the band
energy. A unit energy signal is thus essentially band-limited, if the
out of the band energy is smaller than 1 − ε, for a small epsilon,
see [10] for more information.

While we chose here [0, 2π/T ] as the essential band limit of the
signal, generalizing to other frequency supports is straight forward.
We can therefore write the Discrete Time Fourier Transform (DTFT)
of yi[n] as:

Yi(e
jωLT ) =

1

LT

L−1X
l=0

e−jciT (ω−2πl/LT )X(ω − 2πl/LT ) (1)

Applying a reversed digital fractional delay of −ciT seconds to
yi[n] yields zi[n]. The DTFT of zi[n] is therefore:

Zi(e
jωLT ) =

1

LT

L−1X
l=0

ej2πlci/LX(ω − 2πl/LT ) (2)

Therefore, the output zi[n] is the superposition ofL subband compo-
nents of x(t) multiplied by a phase shift that depends on the aliased
band number l and the channel delay, ci [2].

2.1.1. Time Frequency Representation

We are interested in signals that are in some sense sparse in a Gabor-
based Time Frequency (TF) representation. Specifically, consider a
TF atom of the form:

gm,k(t) = g(t−mτ0)ej2πkξ0t (3)

where g(t) defines the window function [11], which is assumed to be
normalized, ‖g‖2 = 1, essentially band-limited to ω ∈ [0, 2π/LT )
and have its temporal support in the interval 0 ≤ t < LNT . Such

a class of TF transforms, includes a wide range of useful transforms
for spectral analysis, e.g. STFT and the Chirplet transform.

The values τ0 and ξ0 define the discrete TF lattice, (τ, ξ) ∈
{(mτ0, kξ0)|(m, k) ∈ Z2} of the TF representation. For conve-
nience we will restrict our attention to TF lattices such that τ0 =
MLT for some integer M and ξ0 = 1/KLT for some integer K.
The frame coefficients of x(t) can then be calculated as:

sm,k := 〈x(t), gm,k(t)〉

=

Z ∞
−∞

x(t)g∗(t−mτ0)e−j2πkt/LKT dt

=
1

2π

Z 2π

0

X(ω + 2πk/LKT )G∗(ω)e−jωmMLT dω

(4)

where the last line follows from Plancherel formula. Using the es-
sentially band-limited assumption on g(t), this is well approximated
by:

sk ≈
1

2π

Z 2π/LT

0

X(ω + 2πk/LKT )G∗(ω)e−jωmMLT dω (5)

2.1.2. Sub-Nyquist TF Representations

Let us now consider the discrete TF representation for a single sub-
Nyquist coset channel signal, zi[n]. Since g(t) is essentially band-
limited, we can use the discrete time sampled atoms:

gm,k[n] = g[n−mM ]ej2πkn/K = g((n−mM)LT )ej2πkn/K .
(6)

The discrete time TF coefficients are given by:

r
(i)
m,k := 〈zi[n], gm,k[n]〉

=

N+mM−1X
n=mM

zi[n]g∗[n−mM ]e−j2πkn/K

=
LT

2π

Z 2π
LT

0

Zi(e
j(ωLT+2πk/K))G∗d(e

jωLT )e−jωmMLT dω

(7)

where Gd(ejωLT ) is the DTFT of g[n] and satisfies:

Gd(e
jωLT ) =

1

LT

∞X
k=−∞

G(ω − 2πk/LT )

≈ 1

LT
G(ω), 0 ≤ ω < 2π/LT

(8)

where the approximation follows from the essentially band-limited
assumption. From (2) we can also write:

Zi(e
jωLT+2πjk/K) =

1

LT

dL−1− k
K
eX

l=−d k
K
e

ej2πlci/LX(ω + 2πk/LKT − 2πl/LT )
(9)

by shifting the window in frequency over which we evaluate Zi.
Substituting (9) into (7) we get:

r
(i)
m,k ≈

1

2πLT

dL−1− k
K
eX

l=−d k
K
e

Z 2π
LT

0

ej2πlci/L.

X(ω + 2πk/LKT − 2πl/LT )G∗(ω)e−jωmMLT dω

≈ 1

LT

X
l

ej2πlci/Lsm,k+lK

(10)
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where the final approximation is good as long as the out-of-band
aliasing effects are negligible. Discrete TF coefficients are therefore
well approximated as the sum of full band TF coefficients weighted
by a coset dependent phase term.

2.2. Sub-Nyquist Reconstruction Algorithm

In order to proceed further, we introduce the following definition.

Definition 1 (Approximate Disjoint Aliased Support (ADAS)). We
say that x(t) has approximate disjoint aliased support in a given TF
representation if each sub-Nyquist discrete TF coefficient is domi-
nated only by a single full band TF coefficient such that:

r
(i)
m,k ≈

1

LT
ej2πlm,kci/Lsm,k+lm,kK , (11)

where l = lm,k is now a function of the sub-Nyquist TF position,
(m, k), m = 0, 1, . . . and k = 0, . . .K − 1.

We proceed by assuming that x(t) has ADAS. This concept is
similar to the notion of approximate disjoint orthogonality used in
blind source separation [12]1.

While a priori we do not know the subband to which r
(i)
m,k

should be associated, we can solve this by comparing the discrete
TF representations for each coset channel. However, first we need to
detect the significant TF coefficients containing signal components.
We can then determine the correct subbands lm,k with which to asso-
ciate them. Both these tasks can be accomplished by considering the
cross channel vector of TF coefficients, rm,k = [r

(1)
m,k, . . . , r

(q)
m,k]

T .

2.2.1. Detection

Under the ADAS assumption one would expect that the TF for each
channel would have a similar magnitude,

‖r(1)m,k‖2 ≈ ‖r
(2)
m,k‖2 . . . ≈ ‖r

(q)
m,k‖2.

It is also reasonable to assume that the noise effects on different
channels are mutually independent since the sampling times are tem-
porally distinct. One possible detection strategy is therefore to define
the coefficient as significant as long as the magnitude ‖rm,k‖2 > τ ,
where the threshold value τ can be chosen to achieve a constant false
alarm rate.

2.2.2. Subband Classification

Once a coefficient vector has been detected as significant it needs
to be assigned to a subband. This can be considered as a clas-
sification or decoding task. Under a Gaussian noise assump-
tion, the optimal classifier is achieved by maximising the abso-
lute inner product between rm,k and the phase vector: θ(l) =

[ej2πc1l/L, . . . , ej2πcql/L]T for the lth subband:

l̂m,k = argmax
lk

|
qX
i=1

r
(i)
m,ke

−j2πcilk/L|2

This classification is uniquely defined as long as the L phase vectors
θ(l), l = 0, . . . , L − 1 are all distinct, which can be achieved with
as few as q = 2 coset channels!

1However, unlike in the DUET algorithm [12] where a delay is approx-
imately with a frequency dependent phase shift, here the phase shift is con-
stant across the aliased band and therefore a much broader class of TF repre-
sentations can be used.

2.2.3. Reconstruction

Combining the detection and subband classification we can finally
estimate the full band TF representation, sm,k, as follows:

ŝm,k+pK =

(
LT
q

Pq
i=1 r

(i)
m,ke

−j2πci l̂m,k/L, if p = l̂m,k
0 otherwise

form ≥ 0, k = 0, . . . ,K−1 and p = 0, . . . , L−1. Full band time
domain reconstruction, if desired, can then be achieved by applying
an inverse full band TF transform to the coefficients, ŝm,k.

2.3. Optimal MC Sampling Delay Selection

The MC delays can be chosen to minimise the probability of incor-
rect subband classification. Under the ADAS assumption, optimal
subband classification is achieved by sampling delays that are as-
sociated with harmonic frames with minimal coherence, µ, defined
as [13]:

µ = max
l 6=l′
|〈θ(l), θ(l′)〉|2.

A benefit of using more MC channels is that the coherence, µ, can
be reduced towards the optimal Welch bound [14] associated with
Equiangular Tight Frames (ETF) [15]. There does not exist an op-
timal frame for an arbitrary down-sampling factor and a number of
multi-coset channels. However, it has been shown that there exist
Harmonic ETF, (HETF), when q = p + 1 and L = q2 − q + 1,
where p is a prime number [16]. For small numbers of channels, the
delay sequence which generates a HETF, can be determined through
an exhaustive search. For the simplest case of q = 2, a HETF is
not generally attainable but any integer delay for c2 (fixing c1 = 0)
achieves the minimal coherence as long as the greatest common di-
vider of c2 and L is c2L. For example this is trivially met by choos-
ing c2 = 1.

For the implementation of a DFD, we need to filter the signals
with a truncated shifted-sinc function, which introduces some dis-
tortion, because of the non-ideal filtering. As we use linear TF trans-
forms and DFD filters, which are associative, we can combine them
to minimise the distortion. As the kernel of TF transform is avail-
able in the continuous domain, TF transformation of the DFD filter,
generates a new set of shifted TF atoms, i.e.,

gcim,k[n] = g(((n−mM)L+ ci)T )e
j2πk
KL

(nL+ci).

The new transform can be approximately implemented by shift-
ing the phase of gm,k[n], with ciT . This technique has been used in
the simulations of this paper.

3. SIMULATIONS

To evaluate the performance of LoCoMC, we set up a synthetic and
a simulated Radar ESM experiments. We first used a chirped signal
with starting and ending frequencies [100MHz, 1.2GHz], in a pe-
riod of 0.5ms. The magnitude of chirp signal was selected 17.78,
while it was windowed with a Tukey window. A normal noise with
σ = 0.5 was then added to the signal, i.e. SNR of the noisy sig-
nal was almost 30dB. A down-sampling factor of L = 13, q = 4
multi-coset channels and τ = σ inv-χ2(1 − 10−5, q) were used in
the proposed method, where inv-χ2(·, q) is the inverse chi-square
cdf, with q degrees of freedom. We used a Hanning window [17]
of size 2Lb512/Le in the STFT transform, where b·e represents the
closest integer. Delays of the system were selected c = [0, 1, 4, 6],
which generate a HETF. The reconstructed signal has a 34dB SNR,
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Fig. 2. ESM signal reconstruction using LoCoMC (b) and windowed MUSIC (c) (L = 13, q = 4). The original noisy signal is shown in (a).

Fig. 3. ESM signal reconstruction using LoCoMC (a) and windowed
MUSIC (b) (L = 52, q = 4).

which is higher than the noisy signal, due to the algorithm denoising
behaviour.

We now compare the performance of LoCoMC with a canonical
MC sampling algorithm, using MUSIC [2]. See also [18] for a short
tutorial on the MC sampling technique. This approach assumes only
a few frequency channels is active. In order to apply this to ESM
signals with a dynamically changing spectrum, we apply a sliding
window, of the size earlier used in STFT, to the signal. While the
structure of input signal has been preserved using such a windowed
MUSIC reconstruction technique, the SNR of the recovered signal,
i.e. 25.66dB, is much less than LoCoMC method.

In the second experiment, we used a set of RF pulses taken from
a Radar ESM simulation2. A very similar setting to the previous ex-
periment, was used in the sampling process, where we considered
a 1.2GHz band, centred at 10 GHz, and demodulated to the base-
band. The noisy ESM signal (left), reconstructed using LoCoMC
(middle) and the reconstructed using a windowed MUSIC algorithm

2The pulse information was kindly provided by Thales UK.

(right) are shown in Figure 2. We can see the structure of the input
signal, which is completely preserved in the reconstruction. How-
ever, much more false alarms appeared, when a windowed MUSIC
was used, while the SNR was also almost 7dB lower than LoCoMC.

Next we evaluate the sampling performance for a larger under-
sampling ratio. We therefore used an undersampling of L = 52,
which gives an average undersampling of 13. Using the previously
selected set of delays, we no longer have a Harmonic ETF, in the
subband classification step. We show the reconstructed signals with
LoCoMC and windowed MUSIC techniques, respectively, in the left
and right panels of Figure 3. Although, most of the pulses are recov-
ered using LoCoMC from only 4 channels of highly aliased signals,
some small pulses are missing, due to the “noise folding effect” dis-
cussed in [19]. We thus see that the signal is noise limited rather
than sparsity limited in our system. On the other hand, the recon-
structed signal by windowed MUSIC has a lower SNR, some mis-
aligned pulses and many more false alarms.

4. CONCLUSION

A low complexity sub-Nyquist sampling technique was introduced
in this paper, which can sample TF-sparse signals. The algorithm is
based on the multi-coset sampling digitiser and a different algorithm
for the signal reconstruction. As the method assumes a different
sparse signal model, i.e. ADAS, it can out perform the canonical
MC reconstruction techniques, for such signals. We showed that the
new signal model fits very well to the Radar ESM signals, and we
therefore yielded some SNR improvement and less false alarms.

As the future work, it is necessary to characterise the model mis-
match robustness of the algorithm. To this end, we need to consider
the analog design tolerance and the signal model mismatch. Which
TF transform best fits to the ESM signals, e.g. an overcomplete
transform like Chirplet [20], is also left for the future.
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