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ABSTRACT

ADCs sit at the interface of the analog and digital worlds and
fundamentally determine what information is available in the
digital domain for processing. This paper shows that a con-
figurable ADC can be designed for signals with non constant
information as a function of frequency such that within a fixed
power budget the ADC maximizes the information in the con-
verted signal by frequency shaping the quantization noise.
Quantization noise shaping can be realized via loop filter de-
sign for a single channel delta sigma ADC and extended to
common time and frequency interleaved multi channel struc-
tures. Results are presented for example wireline and wireless
style channels.

Index Terms— ADC, quantization noise, shaping

1. INTRODUCTION

It’s common for electronic devices to operate with con-
strained power budgets. Within these devices ADCs sit at
the interface of the analog and digital worlds and fundamen-
tally determine what information is available in the digital
domain for processing. Sampling at a high frequency with
a high number of bits allows a sizable contiguous block of
frequencies to be reproduced with high fidelity, but also has
the drawback of requiring a large amount of ADC power
PADC ∝ ∆f2b where ∆f is the bandwidth and b is the
number of bits [6], [7].

Considering the analog signal in more detail, there are
cases where the signal resides within a contiguous band of fre-
quencies but within those frequencies the information content
of the signal is non constant. As an example, consider a mul-
ticarrier wireline or wireless communication system with bit
loading where large constellation sizes are used in high SNR
regions and small constellation sizes are used in low SNR re-
gions (Fig. 1).

Traditionally, an ADC for this type of system would be
designed with a number of bits capable of supporting the
largest constellation size across the entire band. However,
this is power inefficient in the low SNR regions as many
more bits are resolvable than the information content of the
signal. Likewise, the impact of the quantization noise is a

nonuniform degradation of the received signal SNR, as an
equivalent amount of quantization noise added to a high SNR
region results in a larger degradation of SNR than if it was
added to a low SNR region.

Given the existence of signals with information content
which varies with frequency and ADCs which can be de-
signed explicitly or implicitly for quantization noise shaping,
the question arises as to what is the optimal quantization noise
shape for an ADC with a fixed power budget to maximize the
information content in the converted signal.

The key theoretical result in Section 3 is the derivation of
an equation which answers this question and is independent
of a specific ADC architecture. Section 4 then connects this
theory to a common ADC design by showing that quantiza-
tion noise shaping can be achieved through the design of the
loop filter in a delta sigma ADC. Optimal quantization noise
shaping is extended to time and frequency interleaved multi
channel ADC structures in Section 5 and conclusions are pro-
vided in Section 6.
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Fig. 1. Received signal SNR as a function of frequency for an
example wireline (left) and wireless (right) channel.

2. RELATION TO PRIOR WORK

There are multiple methods for shaping ADC quantization
noise and thus the bits vs. frequency profile of the ADC. For
example, multi channel ADCs in the literature have shown
how shaping can be done via changing the constant bits vs.
frequency profile for delta sigma ADCs on a per channel ba-
sis [3], projecting the received signal on a basis optimized for
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the signal before conversion [4], [9] and by allocating more
ADCs to bands where the signal has a higher variance [10].

Efficient shaping for these cases relies on having a suffi-
ciently large number of ADCs such that the SNR of the re-
ceived signal does not change significantly within the band
converted by the 1 of the individual constant bit vs. frequency
ADCs which comprise the multi channel ADC structure. As
such, these examples are better described as block constant
frequency shaped ADCs. In this paper shaping within an in-
dividual ADC’s band is considered, along with extensions to
multi channel cases.

For an implicit example of a bits vs. frequency shaping
ADC in the literature consider the case when the input signal
is sparse in frequency. Compressive sensing ADCs structures
can recover the original signal sampling at a rate proportional
to the occupied signal bandwidth rather than the total system
bandwidth [5]. This can be viewed as an on/off shaping of the
quantization noise where 0 bits are assigned to frequencies
where there is no signal and a constant number of bits are
assigned to frequencies where there is a signal. As in the multi
channel case, this can be viewed as block constant frequency
shaping and similar comments as before apply.

3. INFORMATION MAXIMIZATION

The purpose of this section is to determine the ADC quantiza-
tion noise shape that maximizes the information in the signal
after the ADC. Before the ADC, when the signal and noise
are uncorrelated and the noise is additive colored Gaussian,
the maximum information in a signal occupying frequencies
fA to fB is

Cb =

∫ fB

fA

log2

[
1 +

Sx(f)

Sv(f)

]
df (1)

where f is frequency, Sx(f) is the signal PSD and Sv(f) is
the noise PSD [1].

Modeling the effect of the ADC as adding shaped quan-
tization noise with PSD Sq(f) to the signal, the maximum
information in the signal after the ADC is

Ca ≈
∫ fB

fA

log2

[
1 +

Sx(f)

Sv(f) + Sq(f)

]
df (2)

where the approximation is due to the quantization noise hav-
ing a uniform PDF and signal correlation.

The loss of information due to the ADC is found by sub-
tracting (2) from (1)

C∆ =Cb−Ca ≈
∫ fB

fA

log2

[
1 +

Sq(f)

Sv(f)

]
df (3)

and assuming that the noise PSDs Sq(f) and Sv(f) are small
relative to the signal PSD Sx(f).

While small, the quantization noise is not arbitrarily small
or 0 because the ADC is limited in power. The quantization
noise PSD and number of bits are related by

Sq(f) = 2−2b(f)/12 (4)

and the ADC power and number of bits are related by

PADC =
1

c

∫ fB

fA

2b(f)df, (5)

where c is a proportionality constant that for convenience we
can absorb in the definition of P ≡ cPADC. Using (4) and (5)
the quantization noise PSD and the ADC power are related as∫ fB

fA

S
− 1

2
q (f) =

√
12P. (6)

The smaller the quantization noise, the larger the power of the
ADC.

To determine the optimal quantization noise PSD shape
which minimizes the information loss of the signal after the
ADC (3) given the power constraint (6), integrals are con-
verted into Riemann sums by dividing the band from fA to
fB into K subchannels of bandwidth (fB − fA)/K indexed
by k = 1, . . . ,K and forming the Lagrangian

J [λ, Sq(k)] =
fB − fA

K

K∑
k=1

log2

[
1 +

Sq(k)

Sv(k)

]

+ λ

(
1

K

K∑
k=1

S
− 1

2
q (k)−

√
12P

fB − fA

)
, (7)

where λ is a Lagrange multiplier. As both the information
loss (3) and the power constraint formed from (6) are convex,
their sum (7) is also convex [2].

Taking first order partial derivatives with respect to Sq(k)
and λ, setting the results to 0 and using the assumption that
Sq(f) is small relative Sv(f) creates the system of equations

∂J

∂Sq(k)
=0⇒ S

− 1
2

q (k)≈ 2(fB−fA) log2(e)

λ

Sq(k)

Sv(k)
, (8)

∂J

∂λ
=0⇒ 1

K

K∑
k=1

S
− 1

2
q (k) =

√
12P

fB − fA
. (9)

Substituting (8) into (9), solving for λ, then substituting the
result into (8) and solving for Sq(k) results in

Sq(k) = S
2
3
v (k)

 fB−fA
K

∑K
k=1

Sq(k)
Sv(k)√

12P

 2
3

. (10)

While (10) relates Sq(k) to Sv(k), it’s somewhat cumber-
some to use as Sq(k) occurs on both sides of the equation. To
get rid of the summation term with Sq(k) on the right hand
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side form an equivalent summation term on the left hand side
and solve for the summation term, then substitute back into
(10) to get

Sq(k) = S
2
3
v (k)

[
fB−fA
K

∑K
k=1 S

− 1
3

v (k)
√

12P

]2

. (11)

Letting K →∞ in (11) yields

Sq(f) = S
2
3
v (f)

∫ fBfA S
− 1

3
v (f)df
√

12P

2

(12)

which explicitly relates the optimal quantization noise shape
to the signal noise shape.

Considering (12) in more detail, the squared term in
brackets on the right hand side is a constant which is made
smaller by increasing the power of the ADC. Thus, the opti-
mal quantization noise shape is proportional to S

2
3
v (f). With-

out the 2
3 power, the optimal quantization noise PSD would

be a fixed offset from the noise PSD regardless of the level
of the noise PSD. The 2

3 power effectively shrinks the gap
between the optimal quantization noise PSD and the noise
PSD in low noise regions. As such, while additional power
in the ADC is allocated to low noise frequencies relative to
high noise frequencies, the amount of additional power is
constrained.

Figs. 2 and 3 show examples of the optimal quantiza-
tion noise PSD for maximizing information after the ADC.
Equation (12) was used to generate the analytical quantiza-
tion noise curves. The numerical quantization noise curves
were generated by a stochastic search algorithm designed to
minimize (3) given the power constraint (6) and serve as a
check on the theoretical result.

4. SINGLE CHANNEL ADC QUANTIZATION NOISE
SHAPING

Delta sigma ADCs achieve noise shaping through oversam-
pling and a feedback loop with an embedded quantizer (see
Fig. 4). Using a low pass delta sigma ADC as an example,
the loop filter is designed such that the gain is large inside the
signal band and small outside the signal band to allow the in-
put signal and the analog feedback of the modulator output to
match closely within the signal band. Consequently, most of
the signal difference at the summation node will be at higher
frequencies and generate a shaped quantization error with it’s
power pushed outside the signal band.

A delta sigma ADC can be represented in the z domain by
[8]

Y (z) = STF(z)X(z) + NTF(z)Q(z), (13)

where X(z), Y (z) and Q(z) are the z transforms of the ADC
input, output and quantization error, respectively, and STF(z)
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Fig. 2. A wireline style channel example optimal quantization
noise PSD computed numerically (blue) and analytically (ma-
genta) from (12) for maximizing information after the ADC
with signal PSD (red) and noise PSD (green).
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Fig. 3. A wireless style channel example optimal quantization
noise PSD computed numerically (blue) and analytically (ma-
genta) from (12) for maximizing information after the ADC
with signal PSD (red) and noise PSD (green).

and NTF(z) are the signal and noise transfer functions given
by

STF(z) =
H(z)

1 +H(z)
and NTF(z) =

1

1 +H(z)
. (14)

Note that using the structure in Fig. 4 shapes the quanti-
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zation noise PSD as

Sq(f) =
∆2

12fs

∣∣∣NTF
(
z = ej2πf/fs

)∣∣∣2 , (15)

where ∆ is the quantization step size and fs is the sampling
frequency. Noise shaping can thus be achieved through the
design of the loop filter H(z). Since it is possible to control
the filter coefficients through adjusting feedback currents in
the analog IC, noise shaping can be decided in the digital do-
main according to (12) and then realized in the ADC though
controlling feedback currents.

As an example, a 4th order delta sigma ADC with an over-
sampling ratio of 12 was simulated with a loop filter H(z)
optimized to achieve quantization noise shaping as in (12)
for the example where the channel has a shaped noise spec-
trum. The resulting signal, noise, ideal quantization and ac-
tual quantization PSDs are shown in Fig. 5.
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Fig. 4. A delta sigma ADC.
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Fig. 5. A wireless style channel example optimal quantization
noise PSD from the simulated delta sigma ADC (blue) and
analytically (magenta) from (12) for maximizing information
after the ADC with signal PSD (red) and noise PSD (green).

5. MULTI CHANNEL ADC QUANTIZATION NOISE
SHAPING

Single channel ADCs, each able to optimally shape their
quantization noise, can be combined to create a multi channel

ADC using any of the traditional multi channel structures.
For the case of time interleaving, a set of N individual

ADCs with appropriate time offsets and matching can be
combined to form an ADC with an overall quantization noise
PSD shape that resembles a Nx bandwidth expanded version
of the quantization noise PSD of an individual ADC.

For the case of frequency interleaving, the total bandwidth
can be divided into N contiguous bands such that the power
given in (6) is equal for each ADC. Note that this may result
in an unequal distribution in frequency of the total bandwidth.
Using the wireline style system as an example, Fig. 6 shows
how the total bandwidth is split between N = 4 ADCs such
that the power of each ADC is equal and the information after
the multi channel ADC structure is maximized.

To simplify ADC design and combining, an additional
constraint of equal or integer scale factors of bandwidth could
included.
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Fig. 6. A wireline style channel example. Vertical black lines
indicate the partitioning of the total bandwidth to the individ-
ual ADCs such that the power of each ADC is equal and the
information after the multichannel ADC is maximized.

6. CONCLUSIONS

This paper derived the optimal quantization noise PSD shape
to maximize the information content in a signal after an ADC
with a power constraint. It was shown that quantization noise
shaping can be realized via loop filter design for a single chan-
nel delta sigma ADC and extended to common time and fre-
quency interleaved multi channel structures.
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