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ABSTRACT

Co-channel speech, which occurs in monaural audio recordings of
two or more overlapping talkers, poses a great challenge for auto-
matic speech applications. Automatic speech recognition (ASR) per-
formance, in particular, has been shown to degrade significantly in
the presence of a competing talker. In this paper, assuming a known
target talker scenario, we present two different masking strategies
based on speaker verification to alleviate the impact of the compet-
ing talker (a.k.a. masker) interference on ASR performance. In the
first approach, frame-level speaker verification likelihoods are used
as reliability measures that control the degree to which each frame
contributes to the Viterbi search, while in the second approach time-
frequency (T-F) level speaker verification scores form soft masks for
speech separation. Effectiveness of the two strategies, both indi-
vidually and in combination, are evaluated in the context of ASR
tasks with speech mixtures at various signal-to-interference ratios
(SIR), ranging from 6 dB to -9 dB. Experimental results indicate effi-
cacy of the proposed speaker verification based solutions in mitigat-
ing the impact of the competing talker interference on ASR perfor-
mance. Combination of the two masking techniques yields reductions
as large as 43% in word error rate.

Index Terms— ASR, co-channel speech, soft masking, speaker
verification

1. INTRODUCTION

With the proliferation of mobile devices which provide hands-free
voice-enabled applications, there is a growing need to design al-
gorithms that can improve robustness of automatic speech systems
against various noise sources that are typically active at the same
time. Co-channel speech [1, 2, 3, 4, 5, 6], for example, that occurs in
monaural recordings of two or more simultaneous talkers, can cause
significant degradations in performance of automatic speech recog-
nition (ASR) systems. Co-channel speech is common in hands-free
speech applications such as voice interaction with in-vehicle info-
tainment systems and gaming consoles as well as information and
services access using a speaker-phone.

Unlike human listeners who possess a remarkable, yet seem-
ingly simple, ability to segregate and subsequently attend to a spe-
cific talker (or in general a single sound source) within an acoustic
mixture [7, 8, 9], machine listeners have been shown to face a great
challenge while dealing with such scenarios [10]. This has motivated
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extensive research effort in the past several decades to understand the
human auditory perception mechanism and design algorithmic solu-
tions that can mimic this mechanism [11, 12, 13, 14, 15]. In addi-
tion to the computational auditory scene analysis (CASA) solutions
[16, 17, 18, 19], which are bottom-up methods inspired by psychoa-
coustics principles, there have been several model-based top-down
techniques proposed in the literature to tackle the problem of ASR
in co-channel speech scenarios [6, 20, 21, 22, 23]. It is worth noting
that traditional single-channel speech enhancement techniques (see
[24] for a review) are not applicable for suppressing the competing
talker in co-channel speech because the interference itself is speech
and its time-varying statistics are neither known a priori, nor can they
be estimated from the background.

In this paper, assuming a known target talker scenario, we present
two different masking solutions based on speaker verification to cope
with co-channel speech for ASR. In the first solution, normalized
frame-level speaker verification likelihoods are used as reliability
measures; if a frame is likely to have been produced by the target
talker, it is viewed as reliable and contributes fully to the Viterbi
search otherwise it is considered as unreliable (i.e., masked) and
its contribution to the search is discounted. This method can be
categorized as a missing-feature technique [25] which operates at
frame-level (as opposed to time-frequency level). In the second solu-
tion, speaker verification scores are computed at time-frequency (T-F)
level to serve as a soft mask for reconstruction-based speech separa-
tion [19, 20, 21, 22, 23]. The reconstructed speech signal for each
target talker is then passed to the ASR system for transcription. This
technique is similar to CASA-based speech separation approaches
[17, 18] in the segmentation stage, however instead of using group-
ing cues [15] such as common periodicity, common onset/offset, and
common amplitude modulation, the verification likelihoods are used
to determine which regions of the auditory spectrogram belong to
the target signal. In other words, grouping cues are learned using
generative Gaussian mixture models (GMM) from training data for
each target speaker. We employ the GMM-UBM framework [26]
to compute speaker verification scores for both solutions. Effective-
ness of the proposed strategies are evaluated, both individually and
in combination, in the context of ASR tasks using audio material
from the speech separation challenge (SSC) [27]. We use the hidden
Markov model toolkit (HTK [28]) in our ASR experiments.

2. SPEAKER VERIFICATION BASED MASKING

In this section we provide descriptions of the two speaker verifica-
tion based masking strategies for robust ASR in co-channel speech
scenarios. Our goal is to suppress the competing talker interference
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either in the ASR decoding or indirectly at the signal level through
speech separation. Unless stated otherwise, our assumption is that
the target talker in the mixture is known.

2.1. Time-Level Soft Masking

We first formulate the time-level soft masking method as the joint
maximization of the a posteriori probability of the word sequence
and the target talker given the observed acoustic mixture, and then
show that the resulting solution can be implemented as a frame-level
soft masking in the Viterbi search.

Expressed mathematically, the goal here is to find the word se-
quence from the target talker such that the joint probability among
all possible word sequences W and talkers S, conditioned on ob-
servations O, is maximized. The observations can take many
forms, such as sequence of short-term cepstral feature vectors
X = {x1,x2, . . . ,xT } such as mel-frequency cepstral coeffi-
cients (MFCC) and power-normalized cepstral coefficients (PNCC)
[29], or sequence of longer term prosodic feature vectors F =
{f1, f2, . . . , fQ} [30, 31]. Given this set of observations O =
{X,F}, we can define the joint maximization problem as,

{Ŵ , Ŝ} =arg max
W,S

p(W,S | O)

=arg max
W,S

p(X,F |W,S) · p(W,S)

=arg max
W,S

p(X | F,W, S) · p(F |W,S) · p(W,S)

=arg max
W,S

p(X | F,W, S) · p(F |W,S) · p(W | S)

· p(S)

=arg max
W,S

p(X |W )︸ ︷︷ ︸
SI−Speech

· p(X | F,W, S)

p(X |W )︸ ︷︷ ︸
Speaker

· p(F |W,S)︸ ︷︷ ︸
Prosody

· p(W | S)︸ ︷︷ ︸
SD−LM

· p(S)︸︷︷︸
Prior

. (1)

These five components represent separate knowledge sources, in-
cluding a speaker-independent recognizer (SI-Speech), a normalized
speaker recognizer (Speaker), a prosodic subsystem (Prosody), a
speaker-dependent language model (SD-LM), and a prior for the
given speaker. The knowledge sources can be combined at differ-
ent levels, i.e., from time-frequency (T-F) level to frame-level to
utterance-level, although their availability is dependent on the task
and application (see [5] for more details). For the ASR task consid-
ered in this paper, the use of prosody is not explored and all speakers
are given the same prior. In addition, all talkers follow the same fixed
grammar rule in their speech, therefore the speaker-dependent lan-
guage model becomes uninformative. Accordingly, the maximization
problem for co-channel speech recognition can be simplified as,

{Ŵ , Ŝ} =arg max
W,S

p(X |W ) · p(W ) · p(X |W,S)

p(X |W )
. (2)

The terms on the right hand side of (2) represent speech recognition
and speaker verification scores which can be combined in the search
at various resolutions (from frame to utterance level). The combi-
nation at the frame-level, which is considered in this paper, can be
accomplished in the forward pass of the Viterbi search. The one-pass
approach is practical for applications with small number of speakers
such as co-channel speech separation.

To combine the ASR and speaker verification systems for recog-
nition of co-channel speech, the verification score is treated as a re-
liability measure. If a frame is likely to have been produced by the
target speaker, it is viewed as reliable and contributes fully to the
search, otherwise its contribution is discounted. More precisely, we
use the verification likelihoods to weight the frame likelihoods from
the ASR system as,

Λtotal(xt) = Φ(Λspeaker(xt)) · Λspeech(xt), (3)

where Φ is a sigmoid function that maps the verification likelihoods
into [0 1] range, which is defined as,

Φ(y) =
1

1 + exp (− b(y − θ)) . (4)

In this paper, the verification likelihood for frame t, Λspeaker(xt), is
computed within a text-independent GMM-UBM framework as,

Λspeaker(xt) =
1

M

t+M
2∑

i=t−M
2

log p(xi | λtgt)− log p(xi | λimp),

(5)
where M is the length of a sliding window over which the smoothed
verification score is calculated. Here, λtgt and λimp denote the
speaker models for the target and interfering (or impostor) talkers,
respectively. The availability of a priori knowledge regarding the
target and impostor talkers is dependent on the application. Often,
it is not unrealistic to assume that the target talker is known while
the interfering talker is not, in which case a speaker-independent (SI)
background model is used to represent the impostors.

The mapped verification likelihoods in (3) can be viewed as soft
masks that suppress the competing talker’s speech at the decoding
stage of ASR. Accordingly, this method can be classified as a frame-
level (as opposed to time-frequency level) missing-feature technique.

2.2. Time-Frequency Level Soft Masking

Time-frequency (T-F) masking techniques, which are essentially
based on psychoacoustic principles observed in the human auditory
perception mechanism, have been widely applied to improve speech
intelligibility for both man and machine listeners in the presence of
interfering maskers [11, 15, 17, 24, 25]. The T-F mask, which can
be in binary (i.e., 0 or 1) or soft (e.g., in [0 1] range) form, is either
used to segregate and reconstruct a foreground stream corresponding
to the target signal within the acoustic mixture, or employed as a
reliability measure for different regions in the auditory spectrogram
of the mixture for missing-feature speech recognition. In either case,
the T-F mask estimation primarily involves two stages: segmentation
and grouping. In the segmentation stage, the mixture is decomposed
into T-F units that represent the signal at a specific time frame and
frequency channel, while in the grouping stage, the T-F units are
merged according to psychoacoustic cues such as common peri-
odicity, common amplitude modulation, common onset/offset, and
temporal continuity.

In this paper, however, we take a different grouping approach
based on speaker verification to estimate the soft T-F mask for co-
channel speech separation. A block diagram illustrating the proposed
soft mask estimation approach is shown in Fig. 1. After segment-
ing the speech mixture into T-F units using a 64-channel gammatone
filterbank, we extract the amplitude modulation spectrogram (AMS)
features from 32 ms frames at a 100 Hz rate [32, 33] to parametrize
the signal in each T-F unit. Similar to the time level soft masking
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Fig. 1. Block diagram of the proposed speaker verification based technique for time-frequency soft mask estimation in co-channel speech.

technique described in the previous section, a GMM-UBM frame-
work is then used to compute the speaker verification likelihoods at
the T-F level according to (5), assuming that the target talker is known
a priori in the mixture. Next, the T-F level verification likelihoods are
smoothed across both time frames and frequency bands using 7 and
3 point moving average filtering, respectively. Finally, the smoothed
likelihoods are mapped into [0 1] range using the sigmoid function,
Φ, defined in (4), and the target talker’s speech reconstructed with the
estimated soft mask using the method described in [33]. Computing
the T-F mask with this approach obviates the need for reliable multi-
pitch tracking in voiced regions as well as onset/offset estimation in
unvoiced segments. Here, grouping cues are learned using generative
GMMs from training data for each speaker and the verification like-
lihoods determine which regions of the auditory spectrogram belong
to the target talker.

Fig. 2 shows sample spectrograms for the the sentence ”place
white at D 4 again” from a target male talker in the GRID corpus [34]
(top left) which is mixed with the sentence ”lay red in J 9 now” from
a masker female talker at -9 dB SIR (top right), which corresponds
to the audio file “t2 pwad4a m4 lrij9n.wav” from the SSC data [27].
It is evident from the figure that the spectro-temporal information of
the male talker is masked by the female talker to a great extent. Even
without considering the spectrogram for the clean signal (top left),
the harmonic structure seen from the spectrogram of the mixture, es-
pecially in the first half, suggests that the mixture is dominated by
a female talker’s voice. The estimated T-F soft mask obtained from
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Fig. 2. Sample spectrograms for the sentence ”place white at D 4
again” from a target male talker in the GRID corpus [34] (top left)
which is mixed with the sentence ”lay red in J 9 now” from a masker
female talker at -9 dB SIR (top right). The estimated T-F soft mask
is shown in the bottom left panel along with the spectrogram of the
reconstructed target signal (bottom right).

the proposed speaker verification based approach is shown in the bot-
tom left panel of the figure along with the spectrogram of the recon-
structed target signal (bottom right). Clearly, the interfering masker
is removed from the mixture and the reconstructed spectrogram re-
sembles that of the original unmixed spectrogram, albeit at the ex-
pense of introducing distortion in the time-frequency content of the
target talker’s speech. This is not surprising given the extremely low
operating SIR for this example. Informal listening experiments sug-
gest good quality of the reconstructed signals, in particular when the
masker is of opposite gender.

3. EXPERIMENTS

The proposed speaker verification based masking techniques for co-
channel speech recognition are evaluated on the SSC database [27]
comprising audio recordings from a total of 34 speakers (16 female
and 18 male talkers). Speech material in the SSC database are ex-
tracted from the GRID corpus [34] which consists of sentences that
follow a fixed and simple grammatical structure L = 〈command:4〉
〈color:4〉 〈preposition:4〉 〈letter:25〉 〈number:10〉 〈adverb:4〉, where
the numbers in brackets indicate the number of choices at each point.
The letter “w” is not included since it is the only multi-syllabic spo-
ken letter in English.

For training, there are 500 clean recordings available per talker,
and for tests 600 sentence pairs are mixed at seven different signal-
to-interference ratio (SIR) levels: 6, 3 ,0, -3, -6, -9 dB, and clean. The
clean test set contains original unmixed recordings from target talk-
ers, virtually representing a condition with infinity (inf) SIR. Within
each test set there are approximately equal number of sentence pairs
from talkers of opposite genders (DG), talkers of the same gender
(SG), and the same talkers (ST). In each sentence pair, the color key-
word of the target talker is “white” while that of the masker is not,
and the task is to report keyword recognition performance of the let-
ter and number in the target utterance.

In our experiments, HTK is used to perform ASR. All record-
ings are parameterized into 39-dimensional PNCCs that have been
previously shown to be robust alternatives to MFCCs for co-channel
speech recognition [29]. For SI acoustic modeling, data from all 34
talkers (i.e., 17000 utterances) are pooled to train context-dependent
tied state triphone HMMs. The probability distribution in each state
is modeled via a 32-component GMM with diagonal covariance ma-
trices. Maximum a posteriori (MAP) adaptation is employed to es-
timate speaker-dependent (SD) acoustic models using 500 training
utterances for each talker. A bi-gram language model reflecting the
grammatical structure defined in L is built and used along with the
acoustic models to find the most likely state sequence given the ob-
servations.

In order to obtain speaker verification likelihoods for the time-
level soft masking method (SM-T), a 256-component SI GMM (a.k.a.
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Fig. 3. Co-channel speech recognition performance on the SSC task
for the baseline SI and SD systems as well as for systems with SM-T
and SM-TF processing methods individually and in combination.

UBM) is learned using training data from all talkers in SSC corpus.
Speaker-specific models are then MAP adapted from the UBM. Here,
we also use PNCCs as acoustic features. The sigmoid function pa-
rameters, b and θ, are set to 1 and −0.25, respectively (for a sensi-
tivity analysis of performance with respect to these parameters see
[5]). As for the time-frequency level soft masking approach (SM-
TF), a 1024-component UBM is trained on AMS features extracted
from T-F units for all talkers, and SD models are estimated using
MAP adaptation. We have found that adapting all GMM hyperpa-
rameters, i.e., mixture priors, mean vectors, and covariance matrices,
is necessary to achieve the best speech separation performance. For
the SM-TF method, the sigmoid parameters, b and θ, are set to 1 and
0, respectively. Gaussian models in both methods use diagonal co-
variance matrices. The MSR Identity Toolbox [35] is used for all our
speaker verification experiments.

4. RESULTS

Fig. 3 shows co-channel speech recognition performance on the SSC
task for the baseline SI and SD ASR systems as well as for systems
with speaker verification based frame-level and time-frequency level
soft masking techniques denoted as SM-T and SM-TF, respectively.
Results are reported in terms of percent word-error rate (WER), tak-
ing into calculations all words in the vocabulary and grammar (for
keyword recognition performance see Fig. 4). Several observations
can be made from this figure. First, recognition performance of all
systems degrades rapidly as the SIR decreases, and performance drop
is the largest for the baseline SI system. Second, SD modeling has a
small positive impact on the performance, particularly at lower SIRs.
This is not surprising given that the SD system has limited ability to

distinguish between target-dominant and masker-dominant regions.
Third, when the frame-level speaker verification scores are used as
reliability measures in the Viterbi search (i.e., the SM-T method), the
performance improves significantly. Further improvements in per-
formance are achieved with SD modeling and the SM-T process-
ing. Fourth, the SM-TF processing results in much larger gains in
speech recognition performance of co-channel speech. This is ex-
pected because in the SM-TF method the processing resolution is
much finer compared to the SM-T approach, the target-dominant re-
gions are identified not only at specific time frames, but also certain
frequency bands. Finally, combination of the two soft masking tech-
niques yields the greatest boosts in the performance, with relative im-
provements (reduction in WER) as large as 43% percentage points.

Fig. 4 presents performance comparison of the combined ap-
proach (SM-T+SM-TF) versus other strategies that have been eval-
uated on the SSC task using HTK [17, 18, 19, 20, 22, 23, 36, 37,
38, 39]. Results are given in terms of average keyword (i.e., letter
and digit) recognition accuracy across DG and SG test conditions at
different SIRs. The ST condition is not considered here because our
solutions are based on speaker verification and therefore not applica-
ble to this specific condition. Note, however, that the ST condition
(i.e., speakers overlapping with themselves) is unlikely to occur in
practice, especially in mobile voice-enabled applications. It is clear
that the proposed combined technique compares favorably to other
techniques proposed for co-channel speech recognition on the SSC
data for SIRs greater than -3 dB. Also, it is seen that our method in-
troduces the least processing artifacts providing the best recognition
score on clean test set. This is important because the performance
should generalize to other conditions as well.

5. CONCLUSION

This paper has presented two different soft masking strategies
based on speaker verification to improve performance of co-channel
speech recognition, assuming a known target talker scenario. The
speaker verification soft masks were estimated at both time and
time-frequency levels and applied to suppress the competing talker
interference. It was shown that the proposed methods improve the
performance of a baseline “do nothing” ASR system on the SSC data,
both individually and in combination. In addition, the combined so-
lution was shown to outperform other techniques evaluated on the
same data using HTK. The performance can be further improved us-
ing more effective T-F unit representations as well as more powerful
classifiers such deep neural networks (DNN).
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