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ABSTRACT

Vector Taylor Series (VTS) model based compensation ap-
proach has been successfully applied to various robust speech
recognition tasks. In this paper, a novel method to derive the
formula to calculate the static and dynamic statistics based
on second-order VTS (sVTS) is presented, which provides a
new insight on the VTS approximation. Lengthy derivation
could therefore be avoided when high order VTS is used and
the proposed approach is more compact and easier to imple-
ment compared to previous high order VTS approaches. Ex-
periments on Aurora 4 showed that the proposed sVTS based
model compensation approach obtained 16.7% relative WER
reduction over traditional first-order VTS (fVTS) approach.

Index Terms— robust speech recognition, model based
compensation, Vector Taylor Series

1. INTRODUCTION
It is known that the performance of automatic speech recog-
nition (ASR) system degrades greatly when additive noise
presents and the system is trained only with clean speech.
Considering 1) retraining a large vocabulary continuous ASR
system is generally time-consuming and 2) lots of data, which
should be recorded in a specific noisy condition, are often un-
available, adapting original models using a small sample of
test speech is welcomed. Generally almost all methods pro-
posed previously can be grouped into two categories: feature
enhancement approach and model compensation approach.

Feature enhancement approach tries to remove the effect
of the noise in the test utterance so that the processed data
could better match the models trained using clean data. Usu-
ally feature enhancement has less computational cost com-
pared to model compensation. However, it has the drawback
that it relies on point estimates of the enhanced features [1].
In contrast, model compensation approach adapts the mod-
els by compensating the probability distribution of previously
trained models. Among these proposed methods, first-order
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vector Taylor series approach has been widely adopted [2, 3,
4] because of its simple formula and effectiveness. However,
relatively large residual errors would be caused by so simply
truncated Taylor series approximation.

It is believed that higher order VTS could further reduce
the mismatch between the adapted models and observation.
Therefore, some efforts has been given on this direction. In
[5], high order VTS is approximated by a linear function,
which aims to minimize the mean squared error; in [6], sec-
ond order VTS is used to calculate the static mean of the
noisy speech. Extending work in [6], [7] further derived the
formula for the dynamic mean. As for [8], it approximates
the mismatch function with any order VTS using feature en-
hancement method, but recursion operation is needed when
high order is used. All these works, however, expand the
mismatch function around two variables, the noise and the
clean speech, which would be complex to derive the formula.
In contrast, based on feature enhancement way, [9] expands
it in log-spectral domain with respect to nl − xl instead of
(nl,xl), where nl and xl are log-spectra of noise and clean
speech. However, they make the inaccurate assumption that
components in log-spectral features are uncorrelated. In this
paper, we use a novel way to derive the formula in cepstral do-
main to compute dynamic statistics as well as statics based on
second order VTS. As will be shown, the accurate dynamics
statistics are the key for a better performance. Furthermore,
the relation between fVTS and sVTS is also described.

The paper is organized as follows. In section 2, we de-
scribe the formulation to calculate static and dynamic statis-
tics. The relation between fVTS and sVTS is shown in section
3. Experimental results on aurora 4 are reported and analyzed
in section 4 and finally we conclude the work in section 5.

2. MODEL-BASED COMPENSATION USING SVTS
In this study, only additive noise is considered, and the chan-
nel distortion is ignored. And the formulation to calculate
static and dynamic statistics will be described respectively.

2.1. Formula to Calculate Static Statistics
For static features, the nonlinear effect of additive noise in
cepstral domain can be expressed as :
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ys = xs + g(ns − xs) (1)

where ys, xs and ns are static features corresponding to noisy
speech, clean speech and additive noise respectively and the
subscript “s” indicates static parameters. Here both xs and ns

are assumed to have Gaussian distributions with mean µxs,
µns and covariance Σxs, Σns, respectively. In Eq. (1),

g(m) = C ln
(
1 + eC−1m

)
(2)

where C is the discrete cosine transform (DCT) matrix.
Taking expectation of the noisy speech, we would have:

E [ys] = E [xs] + C · E
[
ln
(
1 + eC−1(ns−xs)

)]
(3)

Usually, we will expand g(·) around xs and ns. But it is
less efficent to derive the formula especially high order VTS
is used. Here we consider an alternative way. We use zs to
denote C−1(ns − xs). Since each component of xs and ns is
Gaussian distributed and C−1 is a linear transformation, zs is
also Gaussian distributed. Please note that components in zs

are not mutually independent, nor zs and xs are independent.
Comparing to Eq. (3), we now have:

E [ys] = E [xs] + C · E [ln (1 + ezs)] (4)

The second-order vector Taylor expansion of Eq. (1) is
equivalent to the sum of each term’s second-order Taylor ex-
pansion. For xs, its corresponding expansion is still xs. As
for g(·), its corresponding expansion is much simplified be-
cause it now has only one random vector zs.

The speech and noise are assumed to be independent, then
the mean and covariance for zs are given by

µzs = C−1(µns − µxs) (5)

Σzs = C−1(Σns + Σxs)(C
−1)T (6)

Then the second-order vector Taylor series expansion of
ln(1 + ezs) around µzs can be written as

ln(1 + ezs) ≈ f (0) + f (1) � (zs − µzs)

+
1

2
f (2) � (zs − µzs)� (zs − µzs)

(7)

where � denotes element-by-element multiplication and

f (0) = ln(1 + eµzs) (8)

f (1) = 1− (1 + eµzs)−1 (9)

f (2) = (1 + eµzs)−2 � eµzs (10)

where f (1) and f (2) correspond to the first and second deriva-
tives of ln(1 + ezs) at zs = µzs .

Computing the expectation of Eq. (7), we could have

E [ ln (1 + ezs)] ≈ f (0) +
1

2
f (2) � diag−1(Σzs) (11)

where diag−1(·) denotes the operation of extracting the diag-
onal elements of a matrix as a column vector.

Together with Eq. (4) and (11), then the static mean of the
noisy speech is given by

µys ≈ µxs+C·
{

f (0) +
1

2

[
f (2) � diag−1(Σzs)

]}
(12)

As for the static covariance of noisy speech, it could be
calculated by

Σys ≈ E(ys − µys)(ys − µys)
T = Σxs −K1

−K1
T + C · [Σzs � F1] ·CT + K2

(13)

where
K1 = Σxs(C

−1)T · diag( f (1)) ·CT (14)

K2 =
1

2
C · [Σzs �Σzs � F2] ·CT (15)

F1 = f (1)
(

f (1)
)T

(16)

F2 = f (2)
(

f (2)
)T

(17)

In Eq. (14), diag(·) denotes the operation of generating diag-
onal matrix from a column vector.

2.2. Formula to Calculate Dynamic Statistics

To compute dynamic mean and covariance parameters, con-
tinuous time approximation [10] was used to derive the for-
mula. In the following formula, we use the subscript “∆” to
denote delta statistics, and “∆∆” to denote delta delta.

Let’s take the derivative of the approximation of ys with
respect to time, then we would have:

∂ys

∂t
≈∂xs

∂t
+C·

[
f (1)� ∂zs

∂t
+ f (2)�(zs − µzs)�

∂zs

∂t

]
(18)

Here we assume ∂ns

∂t and ns are independent, similarly for
speech. Since C−1 is a linear transformation, it is easy to
prove ∂zs

∂t and zs are independent, then we would have:

E

[
(zs − µzs)�

∂zs

∂t

]
= E [zs − µzs]�E

[
∂zs

∂t

]
= 0 (19)

Taking expectation of Eq. (18), we have

µy∆ ≈ E

[
∂ys

∂t

]
= µx∆ + C ·

(
f (1) � µz∆

)
(20)

As for delta covariance, it could be computed by:

Σy∆ ≈ Σx∆ −K3 −K3
T + C · [Σz∆ � F1] ·CT

+ C ·
[
Σzs �

(
Σz∆ + µz∆(µz∆)

T
)
� F2

]
·CT

(21)

where

K3 = Σx∆

(
C−1

)T · diag (f (1)
)
·CT (22)
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Similarly, delta delta mean and covariance can be computed
by:

µy∆∆ ≈ µx∆∆ + C ·
(
f (1) � µz∆∆

)
+ C ·

[
f (2) �

(
diag−1(Σz∆) + µz∆ � µz∆

)] (23)

Σy∆∆ ≈ Σx∆∆ −K4 −K4
T

+ C · [ Σz∆∆ � F1 + K5 � F2] ·CT
(24)

where

K4 = Σx∆∆

(
C−1

)T · diag (f (1)
)
·CT (25)

K5 = Σzs �
(
Σz∆∆ + µz∆∆(µz∆∆)

T
)

+ Σz∆ �
(

2Σz∆ + 4µz∆(µz∆)
T
) (26)

In practice, covariance matrices are usually diagonalized
for computational convenience, thus the decoder which has
been optimized for diagonal covariance could be used.

In this paper, noise is modeled by a single Gaussian. To
adapt clean trained models, noise parameters are needed.
Usually, these parameters are estimated iteratively using EM-
like algorithms. However, when high order VTS is used, it
is not easy to derive the formula for re-estimation even for
the mean. For comparison, in this study noise parameters
are estimated by the first and last several frames of each test
utterance.

3. RELATION BETWEEN FVTS AND SVTS

Since many people have implemented their first-order VTS
with model compensation approach, it is interesting to investi-
gate whether second-order approximation could be easily ob-
tained by adding few terms on original formula. This section
will describe the relation between them.

For static mean, the only difference between fVTS and
sVTS is that the former only estimates the ln(1 + ezs) by
first-order approximation. According to [3], the static mean
by first-order VTS is (ignoring channel distortion):

µys ≈ µxs + g(µns − µxs) (27)

The static mean by sVTS could be transformed as:

µys≈µxs+g(µns−µxs)+
1

2
C·
[

f (2)� diag−1(Σzs)
]

(28)

Comparing the above two formula, the second formula
has an additional term in the end.

The static covariance by sVTS could be rewritten as:

Σys ≈ AΣxsA
T + (I−A)Σns(I−A)

T
+ K2 (29)

where

A = C ·diag
(

1

1 + exp (C−1(µns − µxs))

)
·C−1 (30)

As for the delta features of fVTS, take the derivative of ys

with respect to time, it is

∂ys

∂t
≈ ∂xs

∂t
+ C ·

(
f (1) � ∂zs

∂t

)
(31)

Thus, compared to Eq. (20), the delta mean of fVTS and
sVTS are actually the same. The formula could be trans-
formed as:

µy∆ ≈ Aµx∆ + (I−A)µn∆ (32)

As for the delta covariance and delta delta mean and co-
variance, they could be rewritten as the following:

Σy∆ ≈ AΣx∆AT + (I−A)Σn∆(I−A)
T

+ C ·
[
Σzs �

(
Σz∆ + µz∆(µz∆)

T
)
� F2

]
·CT

(33)

µy∆∆ ≈ Aµx∆∆ + (I−A)µn∆∆

+ C ·
[

f (2) �
(
diag−1(Σz∆) + µz∆ � µz∆

)] (34)

Σy∆∆ ≈ AΣx∆∆AT + (I−A)Σn∆∆(I−A)
T

+ C · [ K5 � F2] ·CT
(35)

When noise is stationary, µn∆ and µn∆∆ would be set
to zero. In other words, the dynamic noise mean is not used
to calculate the dynamic mean of noisy speech. Thus, com-
paring the formula in [3] with Eq. (28), (29), (32)-(35) and
ignoring channel distortion, we can see that all statistics need
only one respective term if sVTS is used instead of fVTS,
except for delta mean, which keeps unchanged.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

In order to verify the effect of the proposed approach, we con-
ducted experiments on aurora 4, which is based on the Wall
Street Journal 5k database. In this study, speech models were
trained on clean training data, which comprises 7138 training
utterance. Decision tree state clustering was used to get about
3000 tied triphone states. Since this paper only considers ad-
ditive noise, speech recognition experiments were conducted
on test set B of aurora 4 corpus, which was recorded using the
same microphone as the training data did. Therefore, channel
distortion could be omitted. Six different noises at various
SNRs were artificially added to turn original clean data into
the noisy database. Each noise condition has 330 test utter-
ances from 8 speakers. Only 16kHz testing data were used for
evaluation. We used 12 Mel Frequency Cepstral Coefficient
(MFCC) and C0 as well as the delta and delta-delta features.
HTK [11] software was used to built the system, in which bi-
gram language model was adopted. Each speech state was
represented by 16 Gaussian components while 32 Gaussian
components were used for the silence state model. Both main
and relative beam pruning thresholds are set to be 230.0.
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4.2. Experimental Results

In the following experiments, we first construct the GMM-
HMM baseline, which results are illustrated in Table 1. As
expected, the speech recognition system with clean trained
models degrades greatly when testing environment is noisy.

clean car babble rest. street airport train avg
6.8 37.0 55.1 55.0 64.7 48.8 63.9 54.1

Table 1. WER (%) of the baseline system on test B of AU-
RORA 4 using HMMs trained on clean speech.

Then we implemented various VTS based methods. We
first compare the following three approaches: 1) both static
and dynamic statistics are calculated using fVTS; 2) static
statistics are calculated by second order approximation and
dynamic statistics calculated based on first-order, which is de-
noted as “VTS*” in Table 2 and Table 3; 3) both static and dy-
namic statistics are based on sVTS. Please note that since it
is difficult to re-estimate the noise parameters for high order
VTS as said in previous section, here we only adopt simple
noise estimation by using the first and last several frames. It
is unfair to compare sVTS with fVTS with noise re-estimation
since simply one iteration of noise parameters could result in
a large WER reduction. More accurate noise parameters esti-
mation for sVTS will be in our future work.

car babble rest. street airport train avg
fVTS 15.2 25.9 33.1 27.7 26.4 28.7 26.2
VTS* 14.8 25.1 31.7 26.9 25.5 28.1 25.3
sVTS 11.6 21.3 26.1 22.2 20.1 21.8 20.5

Table 2. WER (%) of several methods on test B when the first
and last 10 frames is used to estimate noise.

car babble rest. street airport train avg
fVTS 14.9 21.3 28.3 24.4 22.0 25.6 22.8
VTS* 14.7 21.1 27.2 23.8 21.7 24.9 22.2
VTS# 13.2 19.6 25.2 21.3 20.0 22.3 20.3
sVTS 11.5 18.7 23.7 20.5 18.3 21.6 19.0

Table 3. WER (%) of several methods on test B when the first
and last 20 frames is used to estimate noise.

As Table 2 and 3 illustrated, we get large improvement by
the VTS based approaches, and the WER of our fVTS system
on test B in Table 3 (22.8%) is similar to the result in [12]
(22.4%) when noise parameters are initially estimated by the
first and last 20 frames.

Comparing fVTS and VTS* in Table 2 and 3, where both
dynamic statistics are calculated based on the first order ap-
proximation, we find more accurate static statistics could im-
prove the performance by a relatively small percentage, es-
pecially in Table 3. On the contrary, comparing VTS* and
sVTS, it seems more accurate dynamic statistics are the key

point to have a better performance, which is in accordance
with the observation in [4].

From Table 2 and 3, sVTS achieves about 19.0% and
14.4% relative WER reduction over VTS* respectively. The
comparison result indicates the dynamic statistics based on
first-order approximation are not accurately estimated. The
relatively large residual errors caused by such approximation
might be the reason. The poor dynamic estimation also indi-
cates the importance to search for a better way to calculate dy-
namic statistics. We find when all statistics are calculated us-
ing second-order approximation, the system obtains an even
larger improvement when compared to fVTS: From table 2
and 3, the sVTS method gets about 21.8% and 16.7% relative
WER reduction over fVTS respectively.

Using the method in this study, it is very easy to derive the
formula for the mean, even for much high order. Therefore, it
is necessary to investigate the performance when mean is cal-
culated by higher order VTS and the covariance is based on
lower order. In Table 3, “VTS#” denotes the way where mean
is calculated by second-order approximation and covariance
is first order based. Comparing fVTS and VTS#, we find the
mere mean modification gets 2.5% absolute WER reduction
on average. On the contrary, sVTS gets only 1.3% absolute
reduction over VTS#. That is to say, the mean calculated by
second-order approximation contributes more to the improve-
ment than its corresponding covariance does, which suggests
we could use more accurate mean to improve performance.

5. CONCLUSION

This paper presents the derivation of the second-order VTS
(sVTS) using an alternative way. The method is rather gen-
eral, therefore higher-order VTS could be easily derived. The
main difference between this study and the work in [5, 6, 7, 8]
is that we only need to expand the mismatch function around
one random vector, so clear and compact formula could be
got and potential computation cost would be reduced. As for
[9], it assumes independence between different components
in log-spectral features, which is a weakness. Instead, we
derive the formula in cepstral domain. Besides, the formula
to calculate the dynamics is also given, which is the key to
improve the performance as is shown in experiment. Another
difference is that the clear relation between sVTS and fVTS is
provided, thus fVTS could be easily transformed into sVTS,
which is especially useful for the people who has already im-
plemented their first order VTS.

The effect of the proposed sVTS has been confirmed on
the aurora 4 based robust speech recognition task. In our ex-
periment sVTS got 21.8% and 16.7% relative WER reduction
over fVTS when noise esimation is based on first and last 10
and 20 frames of each utterance, respectively. And during
our experiment, we find the dynamic statistics are the key to
have a better performance when VTS model compensation
approach is used.
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