
SYNTHESIZED STEREO MAPPING VIA DEEP NEURAL NETWORKS FOR NOISY SPEECH
RECOGNITION

Jun Du1, Li-Rong Dai1, Qiang Huo2

1University of Science and Technology of China, Hefei, P. R. China
2Microsoft Research, Beijing, P. R. China

{jundu,lrdai}@ustc.edu.cn, qianghuo@microsoft.com

ABSTRACT

In our previous work, we extend the traditional stereo-based stochas-
tic mapping by relaxing the constraint of stereo-data, which is not
practical in real applications, via HMM-based speech synthesis to
construct the “clean” channel data for noisy speech recognition.
In this paper, we propose to use deep neural networks (DNNs) for
stereo mapping compared with the joint Gaussian mixture model
(GMM). The experimental results on Aurora3 databases show that
our proposed DNN based synthesized stereo mapping can achieve
consistently significant improvements of recognition performance
over joint GMM based synthesized stereo mapping in the well-
matched (WM) condition among four different European languages.

Index Terms— HMM-based speech synthesis, joint Gaussian
mixture model, deep neural network, noisy speech recognition

1. INTRODUCTION

With the progress of automatic speech recognition (ASR), the noise
robustness of speech recognizers attracts more and more attentions
for practical recognition systems. Many techniques [17] have been
proposed to handle the difficult problem of mismatch between train-
ing and application conditions. One type of approaches to deal-
ing with the above problem is the so-called feature compensation
approach by using stereo data to learn the mapping function be-
tween clean speech and noisy speech. SPLICE [12], namely stereo-
based piecewise linear compensation for environments, is one suc-
cessful showcase which is an extension of techniques [1, 24] de-
veloped at Carnegie Mellon University (CMU) in the past decades.
Also similar approaches are proposed in [8, 9]. Recently, a stereo-
based stochastic mapping technique[2, 3] is proposed, which outper-
forms SPLICE. The basic idea is to build a Gaussian mixture model
(GMM) for the joint distribution of the clean and noisy speech by
using stereo data. The simplicity to construct a joint GMM without
environment selection makes it easier to implement in recognition
stage.

One main problem of these approaches is the constraint of stereo
data. Several works are presented to address this issue. In ([22,
29]), stochastic vector mapping (SVM), which represents the map-
ping from the noisy speech to clean speech by a simple transfor-
mation, is a generalized definition of SPLICE. And a joint training
of the parameters of SVM function and HMMs is implemented by
adopting maximum likelihood (ML) or minimum classification error
(MCE) criteria. MMI-SPLICE [13] is much like SPLICE, but with-
out the need for target clean features. Instead of learning a speech
enhancement function, it learns to increase recognition accuracy di-
rectly with a maximum mutual information (MMI) objective func-

tion. FMPE [25], a kind of discriminatively trained features, is re-
lated with SPLICE to a certain extent [11].

The motivation of our approach is to relax the constraint of
recorded stereo-data from a new viewpoint: synthesized pseudo-
clean features generated by exploiting HMM-based synthesis method
([28, 30]) is used to replace the ideal clean features from one of the
stereo channels in those stereo-based approaches. In [14], we
demonstrate this approach can achieve even better performance than
SPLICE in the clean training condition of Aurora2 database. In
our recent work [16], we apply the synthesized features to stereo-
based stochastic mapping approach with a data selection strategy,
and further verify its effectiveness over a high-performance baseline
of real-world ASR, namely the well-matched condition of Aurora3
databases.

Inspired by recent progress of deep learning [19], especially
its application in speech recognition area ([10, 21, 26]), in this pa-
per, we expand our previous work [16] by using deep neural net-
work (DNN) for stereo mapping. It should be emphasized that here
DNN is used for regression or function approximation, rather than
more commonly used classification. Our experimental results on
Aurora3 database show that DNN based synthesized stereo mapping
can achieve very promising recognition accuracy. Compared with
joint GMM used for stereo mapping in [16], DNN has the follow-
ing advantages: 1) It can make full use of the acoustic context in-
formation via the neighbouring frames; 2) The singular problem of
full covariance matrix estimation in joint GMM can be avoided; 3)
The prediction is straightforward while there are always problems in
minimum mean squared error (MMSE) estimation [16] or maximum
a posterior (MAP) estimation [3] in the framework of probabilistic
model. In terms of deep learning for regression problem, our work
is related to recurrent neural network (RNN) based noise reduction
for robust speech recognition [23], where stereo data of clean and
noisy speech are used. Another relevant work is our most recent
work on DNN based speech enhancement [31], where DNN also as
a regression model provides better listening quality than other tradi-
tional approaches.

The remainder of the paper is organized as follows. In Section 2,
we give a system overview of our proposed framework. In Section 3,
we review joint GMM based approach and present our DNN based
approach. In Section 4, we report experimental results and finally
we conclude the paper in Section 5.

2. SYSTEM OVERVIEW

The overall flowchart of our propose framework is illustrated in
Fig. 1. In the training stage, first a baseline system can be trained
from multi-condition training data using MFCC features with cep-
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Fig. 1. Overall development flow and architecture.

stral mean normalization (CMN). Then the stereo feature vectors
are generated via the training features and baseline HMMs, which
are used to train the parameters of mapping functions. Followed by
feature compensation to training features using the mapping func-
tion, generic HMMs are generated by using single pass retraining
(SPR) [32], which is verified to be more effective than the retraining
from the scratch [15]. The SPR works as follows: given one set
of well-trained models, a new set matching a different training data
parameterization can be generated in a single re-estimation pass,
which is done by computing the forward and backward probabilities
using the original models together with the original training data and
then switching to the new training data to compute the parameter
estimation for the new set of models. In the recognition stage, after
feature compensation to MFCC features extracted from the unknown
utterance, the normal recognition is performed.

As for the stereo data generation module, suppose that we only
have noisy speech as the training data in real applications. Then
HMMs trained using those noisy features are noise-robust to some
extent. To synthesize the features as the “clean” channel of the stereo
data, first state-level forced-alignment of training features with true
labels is performed. With this state sequence and corresponding
HMMs, we can do the HMM-based speech synthesis [28]. The de-
tails of formulation can refer to [14]. Obviously, to the recognizer,
those synthesized oracle feature sequences are perfectly matching
and robust to not only noises, but also other irrelevant factors. In the
following sections, we elaborate on two mapping functions, namely
joint GMM and DNN.

3. STEREO MAPPING

3.1. Joint Gaussian Mixture Model

Assume we have a set of stereo data {(𝒙𝑖,𝒚𝑖)}, where 𝒙 is the clean
feature representation of speech, and 𝒚 is the corresponding noisy
feature representation. 𝐷 is the dimension of feature vectors. Define
𝒛 ≡ (𝒙,𝒚) as the concatenation of the two channels. In the most
general case, 𝒚 representing 𝐿𝑛 noisy speech vectors is used to pre-
dict 𝒙 representing 𝐿𝑐 clean speech vectors. To construct the map-
ping function between 𝒚 and 𝒙, the joint distribution 𝑝(𝒛) should be
trained. Here Gaussian mixture model (GMM) is used:

𝑝(𝒛) =

𝐾∑
𝑘=1

𝜔𝑘𝒩 (𝒛;𝝁𝑧,𝑘,Σ𝑧𝑧,𝑘) (1)

where 𝐾 is the number of mixture components, 𝜔𝑘, 𝝁𝑧,𝑘, and
Σ𝑧𝑧,𝑘, are the mixture weights, mean vector, and covariance matrix
of each component, respectively. Then the mean vector 𝝁𝑧,𝑘 will be
of dimension 𝐷(𝐿𝑐 + 𝐿𝑛) and the covariance matrix Σ𝑧𝑧,𝑘 will be
of size 𝐷(𝐿𝑐 + 𝐿𝑛)×𝐷(𝐿𝑐 + 𝐿𝑛).

The above joint GMM distribution can be estimated in a clas-
sical way using EM algorithm. In the feature compensation stage,
minimum mean-squared error (MMSE) estimation is adopted:

�̂� = 𝐸𝑥 [𝒙∣𝒚] =
𝐾∑

𝑘=1

𝑃 (𝑘∣𝒚)𝐸𝑥 [𝒙∣𝒚, 𝑘] (2)

where 𝑃 (𝑘∣𝒚) is the posterior probability defined as

𝑃 (𝑘∣𝒚) = 𝜔𝑘𝒩 (𝒚;𝝁𝑦,𝑘,Σ𝑦𝑦,𝑘)∑𝐾
𝑘=1 𝜔𝑘𝒩 (𝒚;𝝁𝑦,𝑘,Σ𝑦𝑦,𝑘)

(3)

and the conditional expectation 𝐸𝑥 [𝒙∣𝒚, 𝑘] can be calculated as

𝐸𝑥 [𝒙∣𝒚, 𝑘] = 𝝁𝑥,𝑘 +Σ𝑥𝑦,𝑘Σ
−1
𝑦𝑦,𝑘(𝒚 − 𝝁𝑦,𝑘) . (4)

In [2], it is indicated that the item Σ𝑥𝑦,𝑘Σ
−1
𝑦𝑦,𝑘 in Eq.(4) rep-

resents the linear transformation to the noisy speech features. But
according to the experiments of our proposed approach, we observe
that this linear transformation can even result in poor recognition
performance. One possible explanation is although the covariance
parameters Σ𝑥𝑦,𝑘 and Σ𝑦𝑦,𝑘 trained under the maximum likelihood
criterion for feature compensation in Eq.(2) can bring the minimum
squared error between clean and noisy speech features, it may not
necessarily improve the discriminations among classes of the speech
recognizer. So in our implementation of feature compensation,
Eq.(4) is modified as

𝐸𝑥 [𝒙∣𝒚, 𝑘] = 𝝁𝑥,𝑘 + (𝒚 − 𝝁𝑦,𝑘) (5)

which means only using bias compensation to noisy speech features
is more stable than adding the linear transformation in this case. An-
other benefit from this modification is that we only need to train
a joint GMM with diagonal covariance matrices, which can sig-
nificantly reduce the number of model parameters. Acoustic con-
text expansion by using several noisy feature vectors to predict the
clean feature vector is another trick to improve the recognition per-
formance [2], which increases the size of joint GMM. To achieve
improvement of recognition performance but not increasing the size
of joint GMM, we apply the following smoothing operation after
feature compensation:

�̂�smooth
𝑡 =

∑Δ
𝜏=−Δ(Δ + 1− ∣𝜏 ∣)�̂�𝑡+𝜏∑Δ

𝜏=−Δ(Δ + 1− ∣𝜏 ∣) (6)
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where �̂�𝑡 is the compensated feature vector of the 𝑡th frame, and Δ
is the size for context expansion. It is interesting that this simple op-
eration plays a similar role to the acoustic context expansion method
in [2] based on our experiments.

3.2. Deep Neural Network

A deep neural network (DNN) is a feed-forward, artificial neural
network that has more than one layer of hidden units between its
inputs and outputs [21]. In this work, DNN is adopted as a regression
model to predict the clean features given the input noisy features
with the acoustic context. The DNN training is illustrated in Fig. 2,
which consists of generative pre-training and supervised fine-tuning.

The pre-training procedure treats each consecutive pair of layers
as a restricted Boltzmann machine (RBM) [18] whose joint proba-
bility is defined as:

𝑝(𝒗,𝒉) =
1

𝑍
exp{−𝐸(𝒗,𝒉)} (7)

where 𝒗 and 𝒉 denote the observable variables and latent (hidden)
variables, respectively. 𝐸 is an energy function and 𝑍 is the partition
function to ensure 𝑝(𝒗,𝒉) is a valid probability distribution. If both
𝒗 and 𝒉 are binary states, i.e., the Bernoulli-Bernoulli RBM, the
energy function is given by

𝐸(𝒗,𝒉) = −(𝒃⊤𝑣 𝒗 + 𝒃⊤ℎ 𝒉+ 𝒗⊤𝑾 𝑣ℎ𝒉) (8)

where 𝒃𝑣 , 𝒃ℎ are bias vectors of 𝒗 and 𝒉 respectively, and 𝑾 𝑣ℎ is
the weight matrix between them. If 𝒗 is real-valued data and 𝒉 is
binary, i.e., the Gaussian-Bernoulli RBM, the energy function is:

𝐸(𝒗,𝒉) =
1

2
(𝒗 − 𝒃𝑣)

⊤(𝒗 − 𝒃𝑣)− 𝒃⊤ℎ 𝒉− 𝒗⊤𝑾 𝑣ℎ𝒉 (9)

where we assume that the visible units follow the Gaussian noise
model with an identity covariance matrix if the input data are pre-
processed by mean and variance normalization.

The RBM parameters can be efficiently trained in an unsuper-
vised fashion by maximizing the likelihood over training samples of
visible units with the approximate contrastive divergence algorithm
[18]. As for our DNN, a Gaussian-Bernoulli RBM is used for the
first layer while a pile of Bernoulli-Bernoulli RBMs can be stacked
behind the Gaussian-Bernoulli RBM. Then the parameters of RBMs
can be trained layer-by-layer. Hinton et al. indicate that this greedy
layer-wise unsupervised learning procedure always helps over the
traditional random initialization.

After pre-training for initializing the weights of the first several
layers, a supervised fine-tuning of the parameters in the whole neural
network with the final output layer is performed. We aim at minimiz-
ing mean squared error between the DNN output and the reference
clean features:

𝐸 =
1

𝑁

𝑁∑
𝑛=1

∥(�̂�𝑛(𝒚𝑛,𝑾 , 𝒃)− 𝒙𝑛)∥22 (10)

where �̂�𝑛 and 𝒙𝑛 are the 𝑛th 𝐷-dimensional vectors of estimated
and reference clean features, respectively. 𝒚𝑛 is a 𝐷(2𝐿w + 1)-
dimensional vector of input noisy feature with neighbouring left and
right 𝐿w frames as the acoustic context. 𝑾 and 𝒃 denote all the
weight and bias parameters. The objective function is optimized us-
ing back-propagation procedure with conjugate gradient method in
mini-batch mode of 𝑁 sample frames.

Fig. 2. Deep Neural Network.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

In order to verify the effectiveness of the proposed approach on real-
world ASR, Aurora3 databases are used, which contain utterances of
digit strings recorded in real automobile environments for German,
Danish, Finnish and Spanish, respectively. A full description of the
above databases and the corresponding test frameworks are given in
[4, 5, 6, 7].

In our ASR systems, each feature vector consists of 13 MFCCs
(including 𝐶0) plus their first and second order derivatives. The
number of Mel-frequency filter banks is 23. MFCCs are computed
based on power spectrum. CMN is applied to MFCC feature vec-
tors. Each digit is modeled by a whole-word left-to-right CDHMM,
which consists of 16 emitting states, each having 3 Gaussian mixture
components. We focus on well-matched (WM) “training-testing”
condition for experiments of Aurora3, where both training and test-
ing data are recorded by close-talking (CT) and hands-free (HF) mi-
crophones. In all the experiments, tools in HTK [32] are used for
training and testing. And the tools in [33] are used for generating the
synthesized features.

The parameters for stereo mapping are set as follows. For joint
GMM, 𝐾 = 4096, 𝐷 = 13, 𝐿𝑐 = 𝐿𝑛 = 1, Δ = 1. The learn-
ing rate is set as 0.001 for RBM pre-training. And the number of
epochs is 10 and 100 for RBM pre-training and DNN fine-tuning,
respectively. The mini-batch size 𝑁 is 100. Our other tuning pa-
rameters are set referring to [20]. Note that all the DNNs are trained
separately for different languages.

4.2. Experimental Results

Fig. 3 gives a performance comparison of DNN based synthesized
stereo mapping approach with different number of frames of input
noisy feature with acoustic context information on the testing sets in
the WM condition of Aurora3 Danish database. The configuration of
3 layers and 256 nodes for the hidden layer is used for DNN. We can
observe that both too few frames (not enough context information)
and too many frames (irrelevant information involved) can not result
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Fig. 3. Performance (word error rate in %) comparison of DNN
based synthesized stereo mapping approach with different number of
frames of input noisy feature on the testing sets in the WM condition
of Aurora3 Danish database.

Table 1. Performance (word error rate in %) comparison of the
baseline system and feature compensation systems using synthesized
stereo mapping with different mapping functions on the testing sets
in the WM condition of Aurora3 databases.

German Danish Finnish Spanish
Baseline 7.51 9.16 6.91 6.43

SSM-JGMM 6.59 8.00 5.44 5.87
SSM-DNN(3L) 6.25 6.93 3.53 5.42
SSM-DNN(4L) 5.89 6.04 2.57 4.12

in the best performance. In the extreme case that no acoustic context
is used (1 frame), the word error rate is much higher than that of
the baseline system. In our following experiments, the number of
frames for input feature vectors is set as 29 (i.e., 𝐿w = 14), which is
a good tradeoff used as the acoustic context.

Fig. 4 shows a performance comparison of DNN based synthe-
sized stereo mapping approach with different nodes for the hidden
layer of 3-layer neural network on the testing sets in the WM con-
dition of Aurora3 databases. It is obvious that the recognition per-
formance is consistently improved among four language with more
hidden nodes until the number is 1024, which is set as default in
the following DNN experiments. Further increasing the number of
hidden nodes may lead to the over-fitting problem.

Table 1 compares the performance of the baseline system and
feature compensation systems using synthesized stereo mapping
with different mapping functions on the testing sets in the WM
condition of Aurora3 databases. SSM-JGMM denotes the sys-
tem using joint GMM based synthesized stereo mapping with data
selection strategy which achieves the best results in [16]. SSM-
DNN(3L) represents the system where DNN based synthesized
stereo mapping is used with 3-layer neural network while SSM-
DNN(4L) is corresponding to 4-layer neural network. First, all the
feature compensation systems can achieve significant improvements
of recognition performance compared with the baseline system.
Furthermore, SSM-DNN systems can yield very significant error
reduction over the SSM-JGMM system, especially on Finnish and

Fig. 4. Performance (word error rate in %) comparison of DNN
based synthesized stereo mapping approach with different nodes for
the hidden layer of 3-layer neural network on the testing sets in the
WM condition of Aurora3 databases.

Spanish databases where more training data are provided for the
deep learning. The reason why SSM-DNN is so effective may be
explained as follows. On one hand, the input feature with acous-
tic context information can be fully utilized in the fully connected
structure of deep neural network while joint GMM can not handle
the dimension correlation and long-term context information very
well. On the other hand, the prediction of clean speech features
using DNN is straightforward while there are always problems in
MMSE estimation or MAP estimation of joint GMM. In Table 1,
we can also observe that SSM-DNN(4L) further reduces the error
on the basis of SSM-DNN(3L) which indicates the effectiveness of
the deep architecture. But due to the limitation of training data, the
over-fitting problem occurs when using more than 4 layers neural
network.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel feature compensation ap-
proach via DNN based synthesized stereo mapping for noisy speech
recognition where “clean” channel data is generated by HMM-based
speech synthesis. Our experiments on a real-world in-vehicle con-
nected digits recognition task on Aurora3 benchmark databases
show that for synthesized stereo mapping, DNN based approach can
achieve very significant error reductions over the joint GMM based
approach. Ongoing and future works include 1) to give a perfor-
mance comparison between our feature compensation approach and
noise robust DNN-HMM system reported in [27], and 2) to verify
its effectiveness on large vocabulary speech recognition tasks.
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