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ABSTRACT

Denoising autoencoders (DAs) have shown success in gener-
ating robust features for images, but there has been limited
work in applying DAs for speech. In this paper we present
a deep denoising autoencoder (DDA) framework that can
produce robust speech features for noisy reverberant speech
recognition. The DDA is first pre-trained as restricted Boltz-
mann machines (RBMs) in an unsupervised fashion. Then
it is unrolled to autoencoders, and fine-tuned by correspond-
ing clean speech features to learn a nonlinear mapping from
noisy to clean features. Acoustic models are re-trained using
the reconstructed features from the DDA, and speech recog-
nition is performed. The proposed approach is evaluated on
the CHiME-WSJ0 corpus, and shows a 16-25% absolute im-
provement on the recognition accuracy under various SNRs.

Index Terms— robust speech recognition, feature denois-
ing, denoising autoencoder, deep neural network

1. INTRODUCTION

There is a continuously growing demand for hands-free
speech input for various applications [1, 2]. One driving
force behind this development is the rapidly increasing use of
portable devices such as hands-free mobile telephones, tablets
and voice-controlled systems. Another important application
where distant speech is of interest is that of hearing aids.

In the above distant-talking speech communication sys-
tems, the presence of environmental noise, and/or reverbera-
tion, often causes a dramatic performance drop on automatic
speech recognition (ASR) systems. To improve the robust-
ness of ASR, different approaches have been investigated:
Front-end methods include speech signal pre-processing [3, 4,
5], robust acoustic features [6, 7]; back-end methods include
model compensation or adaptation [8], and uncertainty de-
coding [9] etc. Traditional speech signal front-end techniques
focus on spatial speech processing and separation techniques
such as non-negative matrix factorization (NMF) [4, 5]. Re-
cently, along with the growing popularity of using deep neu-
ral network (DNN)-HMMs for ASR, many researchers have

also reported different ways of using DNNs to generate ro-
bust speech features. For example, Sainath et al. explored
using a deep bottleneck autoencoder to produce features for
GMM-HMM based ASR and obtained good recognition re-
sults [10]. Vinyals et al. investigated the effectiveness of
DNNs for detecting articulatory features, which combined
with MFCC features were used for robust ASR tasks [7].

In this paper we investigate an alternative front-end
method to obtain robust features via deep denoising au-
toencoders (DDAs). The proposed DDA framework involves
layers of affine+sigmoid encoding followed by affine decod-
ing to recover speech features from noisy reverberant speech
features. The DDA is fine-tuned by clean features, which
results in learning a stochastic mapping from noisy to clean.
Denoising autoencoders (DAs) have been visited by Vincent
et al. in [11] and Bengio in [12], and stacked to form stacked
denoising autoencoder (SDA) in [13] to generate robust fea-
tures for images. Moreover, in [14], DAs are applied to
reconstruct clean speech spectrum from reverberant speech.
The key differences between our proposed framework with
this prior work are a) denoising is performed on the feature
level, b) multiple frames of noisy features are mapped to
single frame output features directly c) the training procedure
is differenct since the decoder layers are no longer symmetric
with the encoder layers.

We validate the effectiveness of our proposed DDA front-
end denoising approach on track 2 of the second CHiME chal-
lenge [15]. Track 2 is a 5k medium-vocabulary speech recog-
nition task in reverberant and noisy environment, whose utter-
ances are taken from the Wall Street Journal database (WSJ0).

The rest of the paper is organized as follows. Section
2 presents the proposed DDA feature denoising architecture.
Section 3 describes the training procedure. Then we evaluate
the performance in Section 4, before concluding.

2. DEEP DENOISING AUTOENCODER MODEL

2.1. Traditional Autoencoder

Autoencoders consist of the encoder and the decoder. The
encoder is the deterministic mapping fθ that transforms a n-
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dimensional input vector x into a hidden representation y.
The typical form is an affine mapping followed by a nonlin-
earity:

fθ(x) = s(Wx+ b),

with parameter set θ = {W,b}, where W is a d × d weight
matrix and b is an offset vector of dimensionality d. The re-
sulting hidden representation y is then mapped back to a re-
constructed d-dimensional vector z in input space, with z =
g′θ(y).This mapping is called the decoder. Its typical form is
an affine mapping optionally followed by a squashing non-
linearity, that is, either

gθ′(y) = W′y + b′,

or

gθ′(y) = s(W′y + b′).

with appropriately sized parameters θ′ = {W′,b′}. In gen-
eral, z is not to be interpreted as an exact reconstruction of
x, but rather in probabilistic terms as the parameters (typ-
ically the mean) of a distribution p(X|Z = z) that may
generate x with high probability. This yields an associated
reconstruction error to be optimized with respect to loss
L(x, z) = −log p(x|z). For real-valued x, this requires
X|z ∼ N (z, σ2I), which yields L(x, z) = C(σ2)||x − z||2,
where C(σ2) denotes a constant that depends only on σ2 and
thus can be ignored for the optimization. This is the squared
error objective found in most traditional autoencoders. In this
setting, due to the Gaussian interpretation, it is more natural
not to use a squashing nonlinearity in the decoder. For the
rest of this paper, we use affine+sigmoid encoder and affine
decoder with squared error loss.

2.2. Denoising Autoencoder

The denoising autoencoder (DA) is a straightforward variant
of the basic autoencoder. A DA is trained to reconstruct a
clean input x from a corrupted version of it. The corrupted
input x̃ is mapped, as with the basic autoencoder, to a hidden
representation fθ(x̃) = sigmoid(Wx̃ + b) from which we
reconstruct a z = gθ′(y) = (W′y + b′). Instead of min-
imizing the loss function L(x̃, z) between the input and the
output, parameters θ and θ′ are trained to minimize the aver-
age reconstruction error over a clean training set, that is, to
have z as close as possible to the uncorrupted input x, with
L(x, z) ∝ ||x − z||2. Note that for our speech denoising
and dereverberation task, the corrupted feature x̃ is not of the
same dimension as x. Due to the reverberations, informa-
tion from previous frames is leaked to the current frame, and
noises also makes adjacent frame features less independent.
We use concatenated MFCCs from fifteen contiguous frames
as x̃ to encode, and use only the corresponding middle frame
clean MFCCs as x to fine-tune.

2.3. Deep Denoising Autoencoder

By using multiple layers of encoder and decoder, the DA
can form a deep architecture and become a Deep Denois-
ing Autoencoder (DDA). Note that since we use an affine
decoder without nonlinearity, one can easily join the layers
of decoders to form one single decoder layer. The system
work flow is demonstrated in Figure 1. Specifically, with
parallel clean and noisy speech data available, a DDA can
be pre-trained on noisy reverberant speech features and fine-
tuned by clean speech features. The rich nonlinear structure
in the DDA can be used to learn an efficient transfer function
which removes noise in speech while keeping enough pho-
netically discriminative information to generate good recon-
structed features.
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Fig. 1. Deep Denoising Autoencoder Architecture. This fig-
ure gives an example of a DDA containing two encoder lay-
ers, with 1000 nodes and 500 nodes respectively.

3. TRAINING A DEEP DENOISING AUTOENCODER

3.1. Pre-training

Instead of initializing hidden weights with little guidance, we
perform pre-training by adopting an efficient approximation
learning algorithm proposed by Hinton et al. called one-
step contrastive divergence (CD-1) [16]. The generative pre-
training not only requires no supervised information, but can
also put all hidden weights into a proper range which can be
used to avoid local optima in the supervised back-propagation
based fine-tuning.

Figure 2(a) illustrates the pre-training of our DDA. Pre-
training consists of learning a stack of restricted Boltzmann
machines (RBMs), each having only one layer of feature de-
tectors. After learning one RBM, the status of the learned
hidden units given the training data can be used as feature
vectors for the second RBM layer. The CD-1 method can be
used to learn the second RBM in the same fashion. Then, the
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status of the hidden units of the second RBM can be used
as the feature vectors for the third RBM, etc. This layer-
by-layer learning can be repeated for many times. After the
pre-training, the RBMs are unrolled to create a deep autoen-
coder, which is then fine-tuned using back-propagation of er-
ror derivatives [17].
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Fig. 2. Pre-training consists of learning a stack of restricted
Boltzmann machines (RBMs). After pre-training, the RBMs
are unrolled to create a deep autoencoder, which is then fine-
tuned using back-propagation of error derivatives.

3.2. Fine-tuning

Figure 2(b) demonstrates the fine-tuning state of a DDA.
The goal of back-propagation fine-tuning is to minimize the
squared error loss on the entire dataset between the recon-
structed and clean vectors as follows:

F =

U∑
i=1

||xi − zi||2 (1)

where U is the total number of training cases, zi is the i-th re-
constructed feature vector, and xi is the corresponding clean
feature vector. Suppose we have a DDA withM hidden layers
and a decoder layer with N outputs (e.g., 39). By taking par-
tial derivatives, the gradient of weights for the decode layer
are

∂F

∂Wl
=

U∑
i=1

[Zl(i)El(i)]
Tvil (2)

where each vil represents the output of the l-th hidden layer
for the i-th input. and the gradients for the bias are

∂F

∂εl
=

U∑
i=1

[Zl(i)El(i)]
T (3)

where Z is the transfer function and E is the error function.
For the decoder layer

ZM+1(i) = 1 (4)

EM+1(i) = xi − zi. (5)

For the l-th hidden layer (l ∈ [1..M ]),

Zl(i) = (Wlv
i
l + εl) · (1−Wlv

i
l − εl) (6)

El(i) = WlZl(i)El+1(i) (7)

After calculating these gradients, stochastic gradient descent
(SGD) is used to update the parameters [12].

4. EVALUATION

The effectiveness of the proposed framework is evaluated on
ChiME-WSJ0 corpus [15] using MFCC features. A DDA is
first trained on the training set. Next, raw test speech fea-
tures are processed by the trained DDA. Acoustic model is re-
trained using the processed features, and the retrained model
is utilized for speech recognition.

4.1. Dataset

Track 2 data from second CHiME challenge is a 5k-vocabulary
task in reverberant and noisy environment, whose utterances
are taken from the Wall Street Journal database (WSJ0). The
training data set (si tr s) contains 7,138 utterances from 83
speakers, the evaluation data set (si et 05) contains 330 ut-
terances from 12 speakers (Nov92), and the development set
(si dt 05) contains 409 utterances from 10 speakers. Acoustic
models were trained using si tr s and some of the parame-
ters (e.g., language model weights) were tuned based on the
WERs of si dt 05. This database simulates a realistic en-
vironment. We use the type of data called Isolated, which
is created as follows: First, clean speech is convolved with
binaural room impulse responses corresponding to a frontal
position at a distance of 2 m from the microphones in a fam-
ily living room; Second, real-world noises recorded in the
same room are added, with the noise excerpts selected to
obtain signal-to-noise ratios (SNRs) of -6, 3, 0, 3, 6, and 9
dB without rescaling. Noises are non-stationary such as other
speakers utterances, home noises, or background music.

4.2. Acoustic features

Both the clean and noisy reverberant speech waveforms are
parameterized into a sequence of standard 39-dimensional
Mel-frequency cepstral coefficient (MFCC) vectors: 12 Mel-
cepstral coefficients processed by cepstral mean normaliza-
tion (CMN), plus logarithmic frame energy and delta and
acceleration coefficients. The MFCCs are extracted from
25ms time frames with a step size of 10ms. Prior to fea-
ture extraction, the input binaural signals are down-mixed to
mono by averaging the two channels together. Although this
down-mixing operation leads to a small degradation of WER,
we decided to use it in order to focus on the evaluation of the
front-end processing technique.
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4.3. Experimental Setup

Table 1 presents the results for different DDA configurations
and their resulting average WER over 6 SNR scenarios. In the
first column, 500 indicates a DDA that has one encoder layer
with 500 hidden units, while 500x500 denotes a DDA with
two hidden layers each of which has 500 hidden units. All
DDA configurations have an input layer with 15*39 units and
an affine encoder output layer with 39 units. The pre-training
in each configuration was set to stop at the 25th iteration with
a learning rate of 0.004 and a batch size of 256. The fine-
tuning using back-propagation was set to stop at the 50th iter-
ation using the line search stochastic gradient decent method
with a batch size of 256. As we can see from Table 1, the av-
erage WER is not very sensitive to the DDA configurations.
For the following experiments, the 500x500 configuration is
used.

DDA Average WER
500 35.69%

500x500 34.04%
1000x1000 34.51%

500x500x500 34.22%

Table 1. WER vs. different DDA configurations.

4.4. Speech Recognition

The HMM/GMM training follows the recipe in [18]. The
number of phonemes is 41: 39 phones plus 1 silence (sil)
and 1 short pause (sp) model. The output distributions of
sp and sil have their parameters tied. The number of clus-
tered triphone HMM states is 1860 and is relatively smaller
than the conventional setup (more than 2000 states). Each
HMM has three output states with a left-to-right topology
with self-loops and no skip. Each HMM state is represented
by a GMM with 8 components for phoneme-based HMMs
and 16 for silence-based HMMs. The standard WSJ 5K non-
verbalized closed bigram language model is considered. We
only re-estimate the HMM/GMM parameters from a clean
speech acoustic model, and do not change the model topol-
ogy for simplicity. Decoding is performed using HVite [19]
with a pruning threshold.

4.5. Results

Table 2 reports the performance of the system trained on Iso-
lated (noisy and reverberated) dataset as a function of the
SNR. We compare the WER with and without the proposed
front-end processing. We can see that over six SNR scenar-
ios, the proposed method improved the recognition accuracy
by 16.68%, 19.88%, 25.05%, 22.87%, 21.8%, and 20.51% re-
spectively. The baseline system is trained on matching noisy

reverberant data with the exact same setting. This improve-
ment shows the impact of front-end denoising and derever-
beration. The improvement is more dramatic in the 0 dB and
3 dB cases. This should be affected by the fact that we did
not train our DDA for various SNR degrees. Thus the fea-
ture mapping tends to either overfit or underfit for high or low
SNR cases. In comparing our results against those obtained
by the actual participants of the CHiME Challenge [20], ours
are among the top two. Note that the CHiME challenge par-
ticipants employed strategies at the spatial signal, feature and
model levels [21] while we only utilize a front-end feature
denoising technique. If we were to combine our proposed
method with the spatial information and back-end techniques,
the results would have been better.

WER
SNR Baseline using Using proposed DDA

MFCC features reconstructed feature
-6dB 70.43% 53.75%
-3dB 63.09% 44.21%
0dB 58.42% 33.37%
3dB 51.06% 28.19%
6dB 45.32% 23.52%
9dB 41.73% 21.22%

Table 2. WER under different SNRs.

5. CONCLUSION AND FUTURE WORK

In this paper we presented a front-end speech feature denois-
ing and dereverberation method based on deep denoising au-
toencoders. The proposed framework is unsupervised and
learns a stochastic mapping from the corrupted features to the
clean ones. Speech recognition experiments on the 5k noisy
reverberant CHiME-WSJ0 corpus showed a 16 to 25% ab-
solute improvement compared to the provided baseline. Our
results are also among the top two for task 2 in the second
CHiME Challenge, without using any backend technique. In
the future, we plan to train a noise adaptive DDA for fea-
ture denoising by feeding estimated SNR as a model param-
eter. Also, since this feature denoising method does not pre-
clude the use of many other front-end or back end methods,
we would like to combine this approach together with array
speech processing and back-end model adaptation. Experi-
ments on larger vocabulary tasks, and with languages other
than English will also be performed, since this DDA based
speech feature denoising framework is language independent.
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