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ABSTRACT

Previous use of gaze (eye movement) to improve ASR
performance involves shifting language model probability
mass towards the subset of the vocabulary whose words
are related to a person’s visual attention. Motivated to im-
prove Automatic Speech Recognition (ASR) performance in
acoustically noisy settings by using information from gaze
selectively, we propose a ‘Selective Gaze-contingent ASR’
(SGC-ASR). In modelling the relationship between gaze and
speech conditioned on noise level - a ‘gaze-Lombard effect’ -
simultaneous dynamic adaptation of acoustic models and the
language model is achieved. Evaluation on a matched set of
gaze and speech data recorded under a varying speech bab-
ble noise condition yields WER performance improvements.
The work highlights the use of gaze information in dynamic
model-based adaptation methods for noise robust ASR.

Index Terms— ASR, speech, acoustic noise, noise robust
ASR. eye movement, Mutual information, Language Model
adaptation, Acoustic Model adaptation, gaze, visual attention

1. INTRODUCTION

Gaze-contingent Automatic Speech Recognition (GC-ASR)
uses information from gaze (eye movement) to improve per-
formance. This involves the detection of deictic eye gestures
i.e. visual attention (VA) towards visual referents. Perfor-
mance improvements are achieved around the time of VA
by dynamic Language Model (LM) adaptation - shifting LM
probability mass away from words not related to the visual
referent towards words which are. This could be desirable in
acoustically noisy environments where speech is more diffi-
cult to detect; ASR difficulties arise primarily from deviations
between training and field/test data resulting from source sep-
arability and spectral changes to speech (the ‘Lombard effect’
[1] [2]). Approaches to address the Lombard effect in the
acoustic domain focus on feature enhancement and/or model
parameter adaptation.

A GC-ASR function is increasingly afforded in human-
computer interaction (HCI) systems. Technology affords the
sensing of multiple human modalities and interactions are be-
coming more human-like e.g. robots and avatars. HCI sys-
tems are evolving from requiring people to actively and con-

sciously direct gaze to display e.g. as a mouse replacement
for people with physical disability, to systems that are aware
of the user’s visual environment and able to monitor natu-
ral gaze, placing no constraints a person’s eye movements.
Understanding speech communication in these scenarios re-
quires consideration of the relationship of speech to other
modalities and the use of information from other modalities in
speech processing. A GC-ASR function makes a worthwhile
contribution to these considerations.

Gaze has been ascribed several roles relating to a person’s
cognition and its role in human interaction [3]. If gaze is used
as an information source for dynamic LM Adaptation in ASR
in real-world settings, then its use should be selective. Fur-
thermore, in the presence of acoustic noise, gaze behaviour
and its relationship with speech may change, suggesting a po-
tential for dynamic Acoustic Model (AM) adaptation by ex-
ploiting a ‘gaze-Lombard effect’.

In this work a ‘Selective Gaze-contingent Automatic
Speech Recognition’ (SGC-ASR) system is proposed. It uses
information from gaze to improve its performance by both
dynamic LM and AM adaptation. In section 2 related work is
summarized. Section 3 describes the architecture and frame-
work for the system. The implementation and evaluation
is described in section 4, with results reported in section 5.
Section 6 concludes.

2. RELATION TO PRIOR WORK

2.1. Using gaze to improve ASR

Dynamic LM Adaptation is the approach used in all current
GC-ASR[4][5]. Refinements to use only VA information re-
lated to task have been proposed by exploiting differences in
gaze before and during utterances[6] and estimating the rele-
vance of a sequence of VA to task[7]. In these works, a cache-
based LM is used where the cache contains sequence of VA
with associated related words.

2.2. Novelty

Previous GC-ASR exclusively focus on dynamic LM adap-
tation. The effect of acoustic noise on performance of such
systems was explored in our recent work [7]. The idea is ex-
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tended here by proposing a taxonomy of ‘gaze roles’ to dis-
criminate between different gaze behaviours and to model the
relationship between gaze and speech affording dynamic AM
adaptation.

2.3. Explaining gaze behaviour

There are multiple explanations for gaze. Pioneering psy-
chological studies linked gaze to cognitive processes [8] and
social interaction [9]. Processes of cognition include scene
perception, reading, object naming [10] [11] [12] and lexi-
cal processing [13]. Eliciting and attributing gaze to specific
cognitive process is problematic because of the absence of a
ground truth; cognition cannot be directly measured. Gaze
can be more reliably interpreted in relation to VA during a
system task or activity, communications with others and re-
action to changes in the environment, due to a measurable
ground truth i.e. identification of what is being looked at.

3. APPROACH

3.1. Taxonomy of gaze roles

Building on the work in [11], [14] and [15], a working (non-
exhaustive) taxonomy for gaze in this study is proposed: Cog-
nition Roles are gaze events relating to cognition which lack
ground truth e.g. reading, scene perception, visual memory
and object naming, sentence planning and psycholinguistic
roles; Visual Attention Roles are gaze events relating to VA
which have ground truth which include Task-oriented Visual
Attention(ToVA) (VA events associated with tasks and activi-
ties assumed by the system), Reactive Visual Attention (RVA)
(VA events elicited by changes to the environment) and So-
cial Visual Attention(SVA) (gaze associated with social inter-
action and not considered further in this study).

3.2. Architecture

Figure 1 outlines the SGC-ASR. There are separate inference
procedures for cognition and VA gaze roles. VA Inference
affords LM Adaptation. Acoustic Noise Inference (via cog-
nition roles) affords AM adaptation. Speech for the inference
procedures is supplied from a baseline ASR system. Gaze
is captured from an eye tracker which provides temporal and
spatial gaze characteristics and the identification of the focus
of VA.

3.3. Visual Attention Inference for LM Adaptation

Dynamic adaptation of an LM using information from gaze
requires the identification of a subset of VA events - i.e. in-
stances of viewing referents which have related words. Refer-
ring to section 3.1, these events are defined as Task-oriented
VA (ToVA). An inference procedure is required to discrimi-
nate between ToVA and the other VA types. This is achieved

Fig. 1. Architecture for the SGC-ASR system.

by maximum likelihood supervised training of a Naive Bayes
classifier with the input features standard gaze characteristics
from VA events, namely fixation duration and saccade length.
Ground truths for VA types are determined from rules based
on their definitions e.g. a VA event of looking at a refer-
ent and speaking about it is labeled as ToVA whereas look-
ing at an referent in response to another talking about it is
labeled as RVA. An additional Task-independent Visual At-
tention (TiVA) class is used for all other VA events not cov-
ered by such rules. The trained classifier provides a score (or
‘relevance’) σx ∈ [0, 1] for a VA event x which indicates its
influence over LM Adaptation. The adapted LM word proba-
bility P ta(wi) at time t is determined by the weighted interpo-
lation of a time invariant baseline n-gram LM Pb(W ) and an
l length VA event cache-based LM P tv(W ) with word proba-
bilities, P tv(wi), computed with the scores σx assigned to vx:

P tv(wi) =
α∑
σy

l∑
σx

where α is the length of a subset of the VA

cache with every VA event related to wordwi. More details of
the VA cache-based LM using VA events and relevance scores
is reported in [7].

3.4. Acoustic Noise Inference for Acoustic Model Adap-
tation

The dynamic adaptation of the ASR AM requires inference
of the acoustic noise level. Features for this inference are the
gaze characteristics fixation duration and saccade length and
the relationship between gaze and speech. This relationship
is captured with two features, each representing a cognition-
oriented gaze role: Mediating Attention (MA) and Object
Naming (ON), estimated over a temporal window by mea-
sures based on apriori knowledge. Figure 2 illustrates the ap-
proach. The top half shows the gaze-speech relationship for
MA, and the bottom half for ON over the same period. Gaze
and speech are modeled as a sequence of discrete-valued ran-
dom variables that represent the ‘information events’ used to
measure the presence of ON and MA. For gaze this is a VA
on the visual referent (e.g. a shape) and the words spoken re-
lated to it (e.g. the name of the shape). A couple is defined for
event pairs. Each couple has a strength r determined from the
pair’s temporal and semantic relationship. Referring to the
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Fig. 2. Measuring the gaze/speech relationship for gaze roles
MA (top half) and ON (bottom half). r is the strength of the
couples used to calculate Mutual Information for each role.

figure, looking at the square prior to saying ‘square’ for MA
(top half) has a strength of r = 1 if the gaze and speech over-
lap and r = 0 otherwise. Whereas for the ON role, a strength
of r = 0.5 is calculated between non-overlapping events of
looking at speaking the word ‘square’. The prevalence of the
gaze roles over a temporal window are estimated using Shan-
non’s Mutual Information (MI) [16]. Let et and st be the ran-
dom variables at time t for gaze and speech respectively. The
MI at time t, I(et; st), is a measure of the difference in en-
tropy between the joint density p(et, st) and the product of the
marginal densities p(et) and p(st). An MI> 0bits (assuming
base 2 log) indicates the degree of presence of the gaze role.
The joint and marginal densities from the coupled event pairs
over a window of time T up to time t are estimated from the
couples re,s: p(et = e, st = s) = re,s

Ne,s
No

where Ne,s is the
number of couples between events e and s and No is the total
number of couples observed. Within any temporal window T
over which MI is calculated, there may be events that are ob-
served only in another window e.g. other referents and words.
Therefore, to preserve the axiomatic assumption of unit mea-
sure, the joint density for events seen in the data, but unseen
as event couples in window T are uniformly estimated from
the probability mass not assigned to the seen joint probabili-
ties. Because the constituents of the joint density are observed
events, the MI for different temporal windows becomes com-
parable regardless of its constituents. Marginal densities are
calculated from the joint density.

4. EVALUATION

4.1. Data

The evaluation uses a dataset recorded for a ‘put that there’
[17] task. The user tells a wizard / instruction receiver to
position a coloured shape on a map displayed on a computer
screen, affording the user to use the cognition gaze role of

ON and a VA gaze role of referring to the referents. The
wizard selects and positions the object, the resulting dialogue
affording the opportunity for the user to react to the wiz-
ards speech and display changes eliciting the users VA-role
of RVA. The map displayed on the computer screen is aug-
mented with the user’s VA to afford the cognition role of
MA - i.e. intention to guide the wizard. Seven participants
take part. Amplified speech babble noise from noisex-92
[18] is added to the speech heard through headphones result-
ing in the task being undertaken under four acoustic noise
conditions: no noise (‘ N0’), less than normal speech 43dB
(‘N1’), conversational speech 55dB (‘N2’) and outdoor com-
mercial areas 64dB (‘N3’) . 100 tasks are recorded for
each of the noise conditions. The user’s gaze is captured
using a head-mounted eye-tracker (SR Research Eyelink 2)
capturing binocular eye position data at 500Hz and the corre-
sponding fixation/saccade events. Participant’s clean speech
is recorded on separate audio channels at a sample rate of
44.1Khz. Timestamped fixation events in the gaze data are
assigned to their nearest visual focus, i.e. a color, shape or
position on the map. Speech is time-aligned transcribed in
two passes by human and forced alignment ASR system [19].
[7] gives further information regarding the data collected.

4.2. Baseline and dynamic LM Adaptation system

The baseline ASR was built using HTK [20] and trained on
the WSJCAM0 corpus of British English with a dictionary
of over 22000 pronunciations [21]. [5] gives further details.
The baseline LM is constructed from the speech transcrip-
tions of the data containing 1056 utterances and 3764 words.
Bigrams with Witten-Bell smoothing[22] are used. Two AM
sets are adapted to the data for speech in N0 and N3 condi-
tions. Baseline AMs are adapted to the data using Maximum
Likelihood Linear Regression (MLLR) [23] and Maximum
A-Posteriori (MAP) adaptation [24]. Output for SGC-ASR
using dynamic LM Adaptation is generated by rescoring base-
line N-Best output for the visual cache-based LM as described
in [7].

4.3. Tests

Three tests are conducted: ‘gaze-Lombard effect’ - the
changes to speech, gaze and their relationship (measured
by MI) in acoustic noise are analyzed to motivate the use of
features suitable for robust between-person inference of the
acoustic noise condition; Acoustic noise inference - a discrim-
inative classifier (Support Vector Machine (SVM)) infers the
acoustic noise condition using the baseline speech, gaze and
MI features; ASR performance - dynamic AM adaptation (i.e.
selection of AM set as N0 or N3 given SVM output) and
LM is compared against the baseline and the LM adaptation
system reported in [7].
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Fig. 3. The MI values based on the gaze role of mediating
attention(MA) and object naming(ON) respectively. A signif-
icant increase of MI value is observed for the role of MA as
acoustic noise is increased in the environment

5. RESULTS

5.1. ‘Gaze-Lombard effect’

Across all 400 recorded tasks, as acoustic noise increases
there is a significant increase in spectral power, F0, and a
reduction in speech rate supporting previous researches of
the Lombard effect. Fixation durations and saccade lengths
significantly increase and decrease respectively, with changes
depending on whether the user is speaking (mean duration
increased 18.4% to 388ms) or listening (mean duration in-
creased 7.7% to 299ms). Figure 3 shows that the MI mea-
sure for gaze role MA significantly increases with noise from
0.33bits to 0.42bits. There is no significant increase for the
gaze role ON MI measure. Changes in their relative values
suggest a difference in cognition as acoustic noise increases.

5.2. Acoustic Noise Inference for dynamic LM adaptation

Two-class (N0 and N3) SVMs are trained with the radial
basis function (RBF) kernel. Input features for the SVMs are
speech, gaze and MI. A 10-fold cross-validation yields the
classification results in Table 1. The MI feature set performs
best with accuracy of 72.3% compared to gaze (51.6%) and
speech (54.3%). Combinations of feature vectors for MI,
gaze and speech perform no better to MI. An additional
SVM discriminating the 7 participants reveals MI ore robust
to between-person differences - 4% above chance accuracy,
compared to the 18% and 29% for gaze and speech respec-

Input Features Acc Precision Recall F-Measure
MI 0.723 0.728 0.723 0.717

Speech 0.516 0.487 0.516 0.464
Gaze 0.543 0.295 0.543 0.383

Table 1. SVM classifier performance for N0 and N3. MI-
based features infer the noise condition best.

System WER
Baseline 67.3

LM Adaptation 49.9
AM+LM Adaptation 42.1

LM +(perfect noise detection) 23.1∗

Table 2. ASR system performance comparisons demonstrat-
ing simultaneous dynamic LM and AM adaptation using gaze
information improves performance.∗hypothetical

tively.

5.3. SGC-ASR Performance

N-best list rescoring (N = 100) of ASR output is used to
measure WER changes. Table 2 shows that the baseline WER
of 67.28% is improved 17.4% by LM Adaptation. A further
7.8% improvement is gained from AM adaptation. For com-
pleteness, the hypothetical upper bound on performance as-
suming perfect noise detection, i.e. 100% accuracy for acous-
tic noise inference, yields a further 19% improvement.

6. SUMMARY

An SCG-ASR system employing dynamic language and
acoustic model adaptation using gaze information selectively
is described and evaluated on acoustically noisy speech.
The inference of acoustic noise based on measuring changes
in the gaze-speech relationship with information-theoretic
mutual information demonstrates good accuracy and min-
imal between-person variation. The results suggest that a
task-specific ‘gaze-Lombard effect’ may be exploited for
noise-robust ASR performance by model adaptation. Further
performance improvements by combining SGC-ASR with
existing acoustic feature enhancement and model adaptation
methods are feasible. The constrained user task setting for the
evaluation invites further analysis of speech communication
during other tasks where gaze is tracked in relation to the
environment and other people.
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