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ABSTRACT 

 

Studies have shown that the performance of state-of-the-art 
automatic speech recognition (ASR) systems significantly 
deteriorate with increased noise levels and channel degradations, 
when compared to human speech recognition capability. 
Traditionally, noise-robust acoustic features are deployed to 
improve speech recognition performance under varying 
background conditions to compensate for the performance 
degradations. In this paper, we present the Modulation of Medium 
Duration Speech Amplitude (MMeDuSA) feature, which is a 
composite feature capturing subband speech modulations and a 
summary modulation. We analyze MMeDuSA’s speech 
recognition performance using SRI International’s DECIPHER® 
large vocabulary continuous speech recognition (LVCSR) system, 
on noise and channel degraded Levantine Arabic speech 
distributed through the Defense Advance Research Projects 
Agency (DARPA) Robust Automatic Speech Transcription 
(RATS) program. We also analyzed MMeDuSA’s performance 
against the Aurora-4 noise-and-channel degraded English corpus. 
Our results from all these experiments suggest that the proposed 
MMeDuSA feature improved recognition performance under both 
noisy and channel degraded conditions in almost all the 
recognition tasks. 

Index Terms— noise-robust speech recognition, large vocabulary 
continuous speech recognition, modulation features. 

 
1. INTRODUCTION 

 

Current Large-Vocabulary Continuous Speech Recognition 
(LVCSR) systems demonstrate high levels of recognition accuracy 
under clean condition or at high signal-to-noise ratios (SNRs). 
However, these systems are very sensitive to environmental 
degradations such as background noise, channel mismatch, and/or 
distortions. Hence, robust speech analysis has become an important 
research area, not only for enhancing the noise/channel robustness 
of automatic speech recognition (ASR) systems, but also for other 
speech applications, such as voice-activity detection, speaker 
identification, etc.  

Traditionally, ASR systems use Mel-frequency cepstral 
coefficients (MFCCs) as the acoustic observation. These perform 
quite well in clean matched conditions and have been used in 
several state-of-the-art ASR systems. Unfortunately, MFCCs are 
susceptible to noise [1], and their performance degrades 
dramatically with increases in noise levels and channel 
degradations. To account for MFCC’s vulnerability to noise and 
channel degradations, researchers have actively sought to obtain a 
robust acoustic feature set. Research on noise robust acoustic 
features typically aims to generate noise compensated features for 
the acoustic-model training and such features can be generated in 
two ways: (1) using speech-enhancement-based approaches, where 
the noisy speech signal is enhanced by reducing noise corruption 

(e.g., spectral subtraction [2], computational auditory scene 
analysis [3], etc.) followed by cepstral feature extraction; or (2) by 
using noise robust speech-processing approaches, where noise-
robust transforms and/or human perception based speech analysis 
methodologies are deployed for acoustic-feature generation (e.g., 
ETSI [European Telecomm. Standards Institute] advanced 
frontend [4], power normalized cepstral coefficients [PNCC] [5], 
modulation based features [6, 7], and several others). 

Studies [8, 9] have shown that amplitude modulation of the 
speech signal plays an important role in speech perception and 
recognition; hence, recent studies [6, 7, 10, 11] have modeled the 
speech signal as a combination of amplitude-modulated narrow-
band signals. Literature [7, 10, 12, 23] have demonstrated that 
modulation based features are robust to noise. In this paper we 
present the Modulation of Medium Duration Speech Amplitude 
(MMeDuSA) feature, which is similar to previously proposed 
modulation based features such as the normalized modulation 
cepstral coefficients (NMCC) [7] or the mean Hilbert energy 
coefficients (MHEC) [23] features but has an extra layer of 
summary modulation information and uses a novel approach to 
estimate the amplitude modulations (AM) of bandlimited subband 
speech signals. The summary modulation information provides a 
noise robust estimate about the overall speech modulation and is 
geared to capture voicing information along with information 
about vowel stress and prominence. MMeDuSA is a noise and 
channel-robust acoustic feature that uses a medium-duration 
analysis window to obtain instantaneous estimates of subband 
speech AM signals.  

One of the conventionally used techniques to estimate AM 
signals from a subband speech signal is the Discrete Energy 
Separation Algorithm (DESA) [11], which uses the nonlinear 
Teager’s Energy Operator (TEO) to demodulate the AM/FM 
components of a narrow-band signal. Prior studies [12] have used 
TEO [10, 11, 12] to create mel-cepstral features that demonstrated 
robustness by improving ASR performance in noisy conditions. 
Note that AM signals computed from DESA may contain 
discontinuities [10, 13] that introduce artifacts in TEO based 
acoustic features. In this paper we directly use the subband TEO to 
have a crude estimate of the AM signals, where the resulting 
estimates are free from any unusual discontinuities. In MMeDuSA 
processing the AM estimates are used to compute the AM power 
over a medium duration window of length 51.2 ms; then it 
performs bias subtraction (using a similar approach outlined in [5]) 
followed by nonlinear root compression to generate an AM power 
spectrum. Discrete Cosine Transform (DCT) is performed on the 
root compressed AM power spectrum to yield a cepstra-like 
feature.  

To analyze the performance of the proposed MMeDuSA feature 
we compare its speech recognition accuracy with respect to 
traditional MFCC features and some state-of-the-art noise-robust 
features, where we explored two different noisy speech recognition 
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tasks: (1) a noisy English speech recognition task with the Aurora4 
dataset and (2) a noisy and channel distorted Levantine Arabic 
dataset. The latter is available from the Linguistic Data Consortium 
(LDC) [20] through the DARPA Robust Automatic Transcription  
of Speech (RATS) program. Note that RATS data is unique in the 
sense that the noise and channel degradations were not artificially 
introduced by performing simple mathematical operations on the 
speech signal, but by transmitting clean source signals through 
different radio channels [20], where variations amongst different 
channels introduced an array of distortion modes. The data also 
contained distortions, such as frequency shifting, speech 
modulated noise, non-linear artifacts, no transmission bursts etc., 
which made robust signal processing approaches even more 
challenging compared to traditional noisy corpora available in the 
literature. 

2. THE MMEDUSA FEATURE PIPELINE 
In [15] Teager proposed an energy operator, popularly known as 
the Teager’s energy operator or TEO. The TEO operates on a 
bandlimited signal and is a function of the signals amplitude and 
its frequency. In [16] Kaiser analyzed the nonlinear TEO, Ψ, and 
presented some of its salient properties.  

Considering a discrete sinusoid x[n], where A = constant 
amplitude, Ω = digital frequency, f = frequency of oscillation in 
Hertz, fs = sampling frequency in Hertz, and θ = initial phase 
angle-  

. (1) 
If  and is sufficiently small, then Ψ takes the form 
               (2) 
where the maximum energy estimation error in Ψ will be 23% if Ω 
≤ , or  [17] used Ψ to formulate the discrete 
energy separation algorithm (DESA), and showed that it can 
instantaneously separate the AM/FM components of a narrow-
band signal using  

  (3) 
 

   (4) 
 

Note that in (2)  can be less than zero 
when , while is strictly non-
negative. Thus, we have modified (2) to 
              (5) 
which now tracks the magnitude of energy changes. Also, the 
AM/FM signals computed from (3) and (4) may contain 
discontinuities [18] which can substantially increase their dynamic 
range. In order to remove such artifacts from the DESA algorithm, 
we propose an estimate of the instantaneous AM signal by 
assuming that the instantaneous FM signal will be approximately 
equal to the center frequency of the gammatone filterbank when 
the subband signals are sufficiently bandlimited 

   (6) 
 

Given (6), the estimation of the instantaneous AM signal from (5) 
becomes very simple 

   (7) 

The steps involved in obtaining the MMeDuSA feature are shown 
in Fig. 1. In the MMeDuSA pipeline the speech signal is first pre-
emphasized and then analyzed using a Hamming window of 51.2-
ms with a 10-ms frame rate. The windowed speech signal s  is 

passed through a gammatone filter-bank having 30 critical bands, 
with center frequencies spaced equally in the equivalent 
rectangular bandwidth (ERB) scale between 250 Hz and 3800 Hz. 
Note that for all experiments presented in this paper, we assume 
that the input speech signal has useful information up to 4000 Hz. 
The filters’ bandwidths are characterized by the ERB scale, where 
the ERB for channel c (where c = 1 … 34) given by- 
 

         (8) 
 

where fc represents the center frequency for filter c and  and 
 are constants set to 9.26449 and 24.7 according to 

Glasberg & Moore specifications [21]. The time signal from the cth 
gammatone filter with impulse response hc(n) is given as 

                  (9) 
 

For each of these 30 subband signals, their AM signals are 
computed using (7). 
 

 
Fig. 1. MMeDuSA1 and MMeDuSA2 feature extraction pipeline 

 

The power of the estimated AM signals was computed (refer to 
Fig. 1) and non-linear compression (we have used 1/15th root 
compression as it was found to be more noise robust compared to 
logarithmic compression and other root compression coefficients) 
was performed on it. The power of the AM signal  for kth 
channel and jth frame is given as 
 

                        .               (10) 
 

For a given analysis window, 30 power coefficients were obtained 
for each of the 30 channels, which were then transformed using 
DCT, and their first 13 coefficients were retained. In our 
experiments we have used these 13 coefficients by themselves 
along with their derivatives; we identify this feature as 
MMeDuSA1. Note that the feature operates in ‘medium duration’ 
as it uses an analysis window of size 52 ms compared to the 
traditionally used 10-ms~25ms windows. 

In parallel, each of the 30 estimated AM signals (as shown in 
Fig. 1) were band-pass filtered using DCT, retaining information 
only within 5 Hz to 350 Hz. These are the medium duration 
modulations (represented as: ), which were summed 
across the frequency scale to obtain a medium duration modulation 
summary 

 

                          (11) 
 

The power signal of the medium duration modulation summary 
was obtained, followed by 1/15th root compression. The resultant 
was transformed using DCT and the first n coefficients were 
retained. These n coefficients were combined with the cepstral 
coefficients and their derivatives obtained from the other branch 
(MMeDuSA1) (refer to Fig. 1) of the feature processing and the 
resulting feature set is named as the MMeDuSA2. Both 
MMeDuSA1 and MMeDuSA2 features were used in our ASR 
experiments presented below. Please note that we have used the 
value of n as 4 for Aaurora-4 experiments and 3 for Levantine 
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Arabic experiments as those were the optimal values found based 
on the results from the development set. 
 

3. DATA USED FOR ASR EXPERIMENTS 
 

For the English LVCSR experiments, the Aurora4 database was 
used, which contains six additive noise versions with channel 
matched and mismatched conditions. It is created from the 
standard 5K Wall street Journal (WSJ0) database and has 7180 
training utterances of approximately 15 hours duration, and 330 
test utterances each with an average duration of 7 seconds. The 
acoustic data (both training and test sets) come with two different 
sampling rates (8 kHz and 16 kHz) and the experiments reported 
here uses only the 8 kHz data. Two different training conditions 
were specified: (1) clean training, which is the full SI-84 WSJ 
train-set without any added noise; and (2) multi-condition training, 
with about half of the training data recorded using one 
microphone, the other half recorded using a different microphone 
(hence incorporating two different channel conditions), with 
different types of added noise at different SNRs. The noise types 
are similar to the noisy conditions in test. The Aurora4 test data 
include 14 test-sets from two different channel conditions and six 
different added noises (in addition to the clean condition). The 
SNR was randomly selected between 0 and 15 dB for different 
utterances. The six noise types used were (1) car; (2) babble; (3) 
restaurant; (4) street; (5) airport and (6) train (set07) along with 
clean condition. The evaluation set comprised 5K words in two 
different channel conditions. The original audio data for test 
conditions 1-7 was recorded with a Sennheiser microphone while 
test conditions 8-14 were recorded using a second microphone that 
was randomly selected from a set of 18 different microphones 
(more details in [19]). The different noise types were digitally 
added to the clean audio data to simulate noisy conditions. 

For the Levantine Arabic LVCSR experiments, the training and 
test data were taken from DARPA RATS Rebroadcast Example 
Levantine Arabic signals (LDC2011E111 and LDC2011E93) for 
the Arabic KWS distributed by LDC [20]. The data was collected 
by retransmitting Levantine Arabic telephone conversation speech 
through eight different communication channels marked A though 
H. These channels have a range of distortions associated with them 
that were similar to that observed in air traffic controller radio 
communication channels and have characteristics such as sideband 
mistuning, tonal interference, intermittent no-transmission bursts, 
multi path interference etc. [20]. The total data for training the 
systems from all eight channels, plus the original clean speech, was 
173 hours. The test set (dev-1) was created in a similar manner by 
retransmitting the data through the eight channels and contained 
between 2.0~2.5 hours of test data. The DARPA RATS dataset is 
unique in the sense that noise and channel degradations were not 
artificially introduced by performing mathematical operations on 
the clean speech signal, but the signals were in fact rebroadcasted 
through a channel and noise degraded ambience and then 
rerecorded. The data contained several artifacts such as 
nonlinearity, frequency shifts, modulated noise, intermittent bursts, 
extremely low SNRs etc., and traditional noise robust approaches 
developed in the context of additive noise may not work so well.  

 
4. ASR SYSTEM DESCRIPTION 

 

For the Aurora4 LVCSR experiments, we used SRI Inter-
national’s DECIPHER® LVCSR system, which uses a common 
acoustic front-end that computes 13 MFCCs (including energy) 
and their Δs, Δ2s and Δ3s. The 52 dimensional MFCC features 
were transformed to 39 dimensions using heteroscedastic linear 

discriminant analysis (HLDA) transform. From our experiments 
we observed that using HLDA on 52 dimensional MFCC features 
(with up to Δ3 information) gives lower error rates than using 39 
dimensional MFCC features (with up to Δ2 information). Speaker-
level mean and variance normalization is performed on the 
acoustic features prior to acoustic model training. The acoustic 
models were trained as cross-word triphone HMMs with decision-
tree-based state clustering that resulted in 2048 fully tied states, 
and each state was modeled by a 32-component Gaussian mixture 
model (i.e., a total of 64K Gaussians for the entire acoustic model). 
The model uses three states (left-to-right) per phone. For the 
experiments presented in this work, all models were trained with 
maximum likelihood estimation. The Aurora-4 system used in our 
experiments uses the 5K non-verbalized closed vocabulary set 
language model (LM), where a bigram LM is used on the initial 
pass of decoding and second-pass decoding with model space 
maximum likelihood linear regression (MLLR) speaker adaptation 
followed by trigram LM rescoring of the lattices is used. A detailed 
description of the ASR system is provided in [22].  

DECIPHER® was also used for the Levantine Arabic acoustic 
model training. We used a version of the system that achieves 
competitive performance on conversational telephone speech 
(CTS) tasks in multiple languages. The ASR system's acoustic 
model is trained as a speaker-independent model by pooling 
sentences from all speakers and clustering them into speaker 
clusters in an unsupervised manner using standard maximum 
likelihood loss measures for splitting Gaussian distributions. Then 
using the acoustic features, mean and variance normalization 
factors are estimated for each speaker cluster. Next, the system 
collects sufficient statistics for three-state hidden Markov models 
(HMM) of triphones and then clusters these states into distinct 
groups using a decision tree that applies a clustering criterion 
based on the linguistic properties of phonetic contexts. Finally, 
using the Baum-Welch algorithm, triphones are estimated as three-
state HMMs with Gaussian mixture models as the output 
probability distributions of the HMMs. During decoding we used a 
bigram language model and phone-loop MLLR to produce an 
initial set of ASR hypotheses that served as references to perform 
model-space MLLR speaker adaptation of the speaker-independent 
acoustic model on the unsupervised speaker cluster hypothesized 
earlier. A full matrix transformation with an offset vector for the 
Gaussian means and a diagonal variance transformation vector are 
estimated using a regression-class tree, where each node with a 
minimum adaptation count of 2200 frames resulted in a set of 
MLLR transformations that were shared by all triphone HMM 
states in that cluster. An average of eight regression classes of 
MLLR transformation was computed for each unsupervised 
speaker cluster. Subsequently, the MLLR-adapted acoustic models 
were used for a second pass of ASR decoding to produce bigram 
lattices. Lastly, the lattices were expanded using a tri-gram 
language model to produce more accurate hypotheses. 
 

5. EXPERIMENTS AND RESULTS 
 

We used Aurora4 LVCSR experiments to analyze different 
components of the MMeDuSA pipeline, where the 8 kHz clean 
training set was used to train the acoustic model and part of the 8 
kHz noisy training data (from the Aurora4 multi-condition setup) 
was used as the development set. We explored replacing the TEO 
based AM estimation with a Hilbert envelope, but that resulted in 
~1.5% increase in word error rate (WER). Finally, we also 
observed a significant degradation in performance when power 
compression was replaced with standard log-compression (around 
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8% relative degradation in WER). From our experiments using a 
wide range of power coefficients we observed that a power 
compression of 1/15th root was the optimal choice. Based on the 
above set of observations we finalized the configuration of the 
MMeDuSA features that were used in our final ASR experiments. 

In Aurora4 experiments we used only mismatched conditions 
(i.e., train with clean data [clean training] and test with noisy and 
different channel data) at 8 kHz sampling rate. Six different feature 
sets were used: (1) MFCCs, (2) PNCC [5], (3) NMCC [7], (4) 
ETSI-AFE [4], and the two different versions of the proposed 
feature: MMeDuSA1 and MMeDuSA2. In all the experiments 
presented below, we used the original feature generation source 
code shared with us by their authors or available from their 
websites (for ETSI-AFE). We also explored using a Frequency-
modulation component (refer to equation 3) from the DESA 
algorithm as a possible competitor for the AM-based MMeDuSA 
feature, but their results were much worse compared to any of the 
features used in our experiments. Tables 1-2 show the WERs from 
the Aurora4 experiments.  

 
Table 1. WER on Aurora-4 for clean training, matched channel 

condition 
 

MFCC PNCC NMCC ETSI MMeDuSA1 MMeDuSA2 
1 Clean 11.7 13.2 13.4 13.4 12.6 11.3 
2 Car 16.6 17.7 17.3 18.5 17.5 15.6 
3 Babble 37.9 32.5 32.6 31.8 33.1 32.1 
4 Restaurant 41.5 33.7 35.3 35.5 34.9 33.5 
5 Street 45.1 34.9 34.7 33.9 36.4 33.2 
6 Airport 33.2 31.4 30.1 29.9 30.6 28.9 
7 Train 45.7 32.6 34.8 33.0 34.6 33.9 
 Avg. (2-7) 36.7 30.5 30.8 30.4 31.2 29.5 

 
Table 2. WER on Aurora-4 for clean training, mismatched channel 

condition 
 

MFCC PNCC NMCC ETSI MMeDuSA1 MMeDuSA2 
1 Clean 15.0 16.6 17.4 17.9 16.8 14.7 
2 Car 20.6 23.2 21.7 23.4 21.3 19.3 
3 Babble 44.7 38.0 37.0 36.5 37.7 35.4 
4 Restaurant 48.3 42.5 41.4 41.2 40.7 38.9 
5 Street 52.9 41.0 40.3 41.2 42.1 39.9 
6 Airport 39.8 38.0 35.7 34.9 35.1 34.1 
7 Train 51.4 39.1 39.2 39.0 40.5 38.4 
 Avg. (2-7) 42.9 36.9 35.9 36.0 36.2 34.3 

 

From table 2 we see that the proposed MMeDuSA2 feature 
performed better for the channel-mismatched conditions than any 
other feature, closely followed by MMeDuSA1, NMCC and ETSI. 
It is quite interesting to note that the difference between the 
MMeDuSA2 and MMeDuSA1 is only a few (4 in the case of 
Aurora4 experiments) coefficients that capture the summary 
modulation and that played an important role in reducing the 
relative overall WER by 5.4% for matched channel conditions and 
5.2% for mismatched channel conditions. The summary 
modulation information in MMeDuSA2 is geared to capture 
voicing information while capturing information such as vowel 
stress and prominence. It also provides a more noise robust 
estimate about the overall speech modulation. The above attributes 
of the summary modulation part of MMeDuSA2 may be the main 
factor behind MMeDuSA2’s superior performance compared to 
MMeDuSA1. We observed a similar trend in our recent 
exploration of MMeDuSA features on speaker recognition 
evaluation [24].  

 For matched channel conditions (table 1) at 8 kHz MMeDuSA2 
provided the best results in five out of seven conditions and also 
provided the lowest overall WER in noisy condition, closely 

followed by ETSI, PNCC and NMCC. In summary MMeDuSA2 
helped to lower the relative overall WER by 19.6% compared to 
the baseline MFCC features and 3% compared to the 2nd best 
performing ETSI features in channel matched condition. For 
channel mismatched condition MMeDuSA2 helped to lower the 
relative overall WER by 20% compared to the baseline MFCC 
features and 4.5% compared to the 2nd best performing NMCC 
features. These results suggest the MMeDuSA2 is both channel 
and noise robust compared to some of the state-of-the-art features 
used in this work. 

Table 3 presents the WERs from the Levantine Arabic ASR on 
the RATS data. Note that due to the difficulty in properly 
transcribing dialectal Arabic, the WERs on clean conversational 
telephone speech are quite higher (around 40%~50% [22]) than in 
English, hence adding noise, channel degradations and other 
distortions easily worsens the WERs. WERs in table 3 confirm that 
the MMeDuSA feature performs well for channel and noise 
degraded Levantine Arabic speech as well, where MMeDuSA2 
provided the lowest WER for four out of eight channels. 

 
Table 3. WER from RATS Arabic speech recognition task 

 

MFCC RASTA-PLP PNCC NMCC MMeDuSA1 MMeDuSA2 
Clean 58.5 56.3 68.4 58.5 62.2 60.1 

Chan. A 84.3 82.8 85.2 82.6 83.0 82.0 
Chan. B 84.2 83.7 88.0 83.5 84.9 82.7 
Chan. C 84.4 82.9 88.1 83.6 83.9 83.2 
Chan. D 72.9 71.1 81.2 73.0 74.4 72.1 
Chan. E 86.8 85.9 90.5 86.4 86.8 85.8 
Chan. F 75.2 74.0 81.4 74.2 75.0 73.9 
Chan. G 65.1 63.4 74.2 65.7 68.2 66.3 
Chan. H 81.7 79.9 87.2 80.6 81.9 81.0 

Avg.(A-H) 79.3 78.0 84.5 78.7 79.8 78.4 
 

6. CONCLUSION 
 

We presented an amplitude-modulation-based noise-robust feature 
for ASR and demonstrated that it offered noise robustness for both 
English and Levantine Arabic LVCSR systems. For English, we 
performed mismatched acoustic-model training; whereas for 
Levantine Arabic, we used a multi-condition model. In both cases 
the proposed MMeDuSA feature demonstrated overall lower 
WERs under noisy conditions compared to the other features.  

The experiments presented in this paper dealt with ASR tasks 
for speech degraded with real-world noise and channel artifacts 
using recognition tasks from two different languages. Given the 
difficulty of the task the proposed feature provided consistent 
improvement with respect to the baseline features and other state-
of-the-art robust features. In the future we intend to explore the 
summary modulation part in details and try multi-resolution 
approaches in obtaining them. We also intend to explore these 
features under noisy and reverberant conditions. 
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