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ABSTRACT

The exemplar-based approaches, which model signals as a

sparse linear combination of exemplars of signals, are proved

to have state-of-the-art performance in noise robust ASR, es-

pecially on low SNRs. However, since both the speech exem-

plars and noise exemplars are built from training data and are

fixed throughout the process of enhancing speech features,

the conventional approach is especially weak for unknown

types of noise. Therefore, in this paper, we propose a semi-

supervised approach which automatically adapt noise exem-

plars to the target noise, while keeping the speech exemplars

fixed. Continuous digits recognition experiments show that

this approach is much more robust for unknown noise. The

recognition errors are reduced by 36.2%.

Index Terms— robust speech recognition, non-negative

matrix factorization, semi-supervised, exemplar-based, noise

reduction

1. INTRODUCTION

The Automatic Speech Recognition (ASR) technology now

has been proved to have desirable performance in an envi-

ronment that is exactly the same as that observed in train-

ing the recognition model. The HMM is the most popular

and successful stochastic approach to speech recognition in

general use, due to the existence of elegant and efficient al-

gorithms for both training and recognition. However, in the

actual world, it is very hard to predict what kind of acous-

tic condition the speakers speak in. Therefore, background

noise, channel distortion and speaker variations sometimes

show great mismatch between the training and testing con-

ditions, which often causes a dramatic degradation in perfor-

mance of the ASR systems.

There have been numerous approaches that aim at reduc-

ing this mismatch. The approaches can be split into three cat-

egories. Firstly, inherently robust parametrization of speech

may be used, such as Histogram Equalization and Linear Dis-

criminant Analysis [1]. Alternatively, the clean speech may

be estimated from its corrupted version, then the clean acous-

tic models may be used as they are. The famous approaches

are Spectral Subtraction [2], Stereo-based Piecewise Linear

Compensation for Environments [3] and Vector Taylor Series

approaches [4]. Finally, the models can be made to fit the

testing condition. For example, Maximum Likelihood Linear

Regression (MLLR) uses a set of linear transforms to adapt

the model parameters to a new acoustic condition.

Recently a class of methods that has gained recent promi-

nence is based on compositional models: noisy speech spec-

tra are represented as a linear, typically sparse, combination

of basis atoms describing the individual speech and noise

sources. The collection of atoms here is called a dictionary,

which includes both clean speech exemplars and noise ex-

emplars [5]. The sparse representation is obtained by finding

the sparsest possible linear combination that describes the

observed signal well, using techniques best known as non-

negative matrix factorisation (NMF) [6]. Reconstruction of

an observed spectrum as weighted sum of parts of the dictio-

nary can be used to separate the spectrum into clean and noisy

spectra and the clean spectrum will be used for recognition.

However, in previous studies[5], since the noise exemplar

in the dictionary is fixed, for unexpected types of noise, the

performance of separating into speech and noise would be

greatly decreased. If acoustic mismatch exists in the noise

type between the exemplars and testing data, the speech parts

of testing data will not be reconstructedwell. In order to solve

the problem, we propose a semi-supervised method that could

adapt the noise exemplars together with the activation ma-

trix while remaining the speech exemplars supervised. This

semi-supervised exemplar adaptive method is more flexible

because it can absorb the various type of noise. AURORA-2

is utilized for testing the method. Our semi-supervised ap-

proach is proved to show much better performance than con-

ventional approach for test set B in AURORA-2, which has

an open noise condition. The average recognition rate for su-

pervised NMF is 78.51, while our semi-supervised approach

gains much higher recognition rate which is 84.22 (36% rela-

tive increase).

The remainder of this paper is organized as follows. In

Section 2, we give a brief review of previous studies of su-

pervised exemplar approach. In Section 3, the proposed noise

exemplar update method is introduced and explained. The re-

sults of experiments are described in Section 4. Finally Chap-

ter 5 draws overall conclusions and describes possible future
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work.

2. SUPERVISED EXEMPLAR-BASED APPROACH

NMF is an useful decomposition method for multivariate

data. Each testing data vector can be approximated by a lin-

ear combination of the basis, weighted by the activation. In

speech processing, the noisy speech can be represented in the

form of NMF as is shown in equation (1).

The magnitude spectrogram describing a whole speech

segment is a B × Ts dimensional matrix. B is the number

of mel-frequency bands of the speech, Ts is the number of

samples in that utterance. In order to decompose the utter-

ance magnitude spectrogram of length Ts, a sliding window

approach is adopted as in [5]. An utterance is divided into a

number of overlapping, fixed-length windows, with window

length of Twin. The columns of in each window are stacked

into a single vector of lengthW = B×Twin. Through apply-

ing sliding window, the original magnitude spectrogram can

be transformed to y, which is a W × N matrix, where N is

the total number of sliding windows in the utterance.

y ≈ s + n (1)

≈

J
∑

j=1

as
jx

s
j +

K
∑

k=1

an
kxn

k (2)

=
[

As An
]

[

xs

xn

]

s.t. xs, xn ≥ 0 (3)

= Ax (4)

s andn are the clean and noise parts of the utterance spec-

trogram respectively. As and An are called the clean dictio-

nary and noise dictionary which are the matrices containing

clean speech exemplars as
j and noise exemplars an

k , with the

dimension of W × J and W × K , respectively. The whole

exemplar dictionary has the number of L = J + K exem-

plars. Each exemplar is one slide window extracted randomly

from the training data and is stacked to a W length vector.

xs and xn are the activation vectors of the clean speech and

noise exemplars, with dimension of J ×N and K ×N . The

requirement of x is non-negative and sparse.

To obtain sparse representation vector x, we use the fol-

lowing cost function to minimize.

d(y, Ax) + ||λ. ∗ x||p (5)

The first term d measures the distance between the noisy ob-

servation and its approximation based on NMF. The second

term enforces sparsity by penalizing the non-zero entries of x

weighted by λ. Kullback-Leibler(KL) divergence is used for

d here, as (6). ye and ŷe are the elements of y and ŷe.

d(y, ŷ) =

E
∑

e=1

ye log(
ye

ŷe

)− ye + ŷe (6)

Enforcing the sparseness of speech exemplars is much

more important than noise exemplars, since an observed

speech segment should be ideally represented only by adding

up a part of atoms of the speech dictionary. We do not make

such assumptions about noise and thus do not enforce the

sparseness of noise exemplars.

The cost function (5) is minimized by firstly initializing

the vector x to unity, and then iteratively applying the update

rule:

x← x. ∗ (AT (y./(Ax)))./(AT
1 + λ) (7)

.∗ and ./ denote element-wise multiplication and division,

respectively. The vector 1 is an all-one vector of length W .

The derivation of (7) is given in [5].

3. SEMI-SUPERVISED NMF APPROACH

The supervised approach has drawbacks when there is a mis-

match between the noise exemplars and noise input in test

data. The number of noise exemplars can be numerous in or-

der to include all types of noise, which may result in huge

computational cost. Therefore, we propose a semi-supervised

approach to solve this problem.

Instead of using fixed noise exemplars, we propose to up-

date noise exemplars together with updating the activation

matrix. The motivation of doing this modification is that we

would like the noise exemplars to be more flexible, so that it

can handle various and different kinds of noise automatically.

However, if we use cost function like (5), the effect of updated

noise exemplars would become so strong that it would even

influence the xs inadequately. Therefore, we modify the cost

function as follows,

d(y, Ax) + ||λ. ∗ x||p + η. ∗ d(N , Ân). (8)

The third term of cost function in (8) represents the KL

divergence from the updated noise exemplars Ân to the origi-

nal noise exemplars N . The purpose of adding the third term

is to suppress the effect of updating noise exemplars. The

update rule for (8) is as follows,

x← x. ∗ (AT (y./(Ax)))./(AT
1 + λ), (9)

An ← (An.∗(y./(Ax)∗xT
n )+η.∗N)/(1∗xT

n +η). (10)

The derivation of (9) and (10) is given in appendix.

4. EXPERIMENTS

We use AURORA-2 to test the performance of semi-supervised

approach. Experimental condition is shown in Table 1.

Acoustic feature vectors used in the exemplar-based

framework consisted of Mel-frequency magnitude spectra:

23 frequency bands plus log-energy, B = 23 + 1 in total.

The exemplar size for the speech and noise dictionaries is

Twin = 20 frames. The speech exemplars are randomly
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Table 1. Experimental Condition

GMM mixture 256

Exemplar numbers for supervised approach 4000 for speech, 4000 for noise

Exemplar numbers for semi-supervised approach 4000 for speech, 2 for noise

Feature for decoding MFCC E D A

training data clean condition in AURORA-2

test data Test set A& Test set B in AURORA-2

selected from training data set. The speech exemplars keep

fixed both in supervised and semi-supervised experiments. In

the experiment for supervised approach, the noise exemplars

are randomly selected from the noise data set in training data

set (from SNR5 to SNR20). In the experiment for semi-

supervised approach, to prevent over-fitting problems, only

two exemplars are used. The noise exemplars Ân are initial-

ized by 1, and are updated together with the activation matrix.

This initialization is proved to have better performance than

randomly select 2 noise exemplars in training data set, since

it gives equal initialization for each mel-frequency band. The

penalizing weight λ for supervised approach is 0.65 for clean

exemplars and 0 for noise exemplars. The penalizing weight

λ for semi-supervised approach is 0.65 for clean exemplars

and 0.5 for noise exemplars, while η = 1. λ and η are chosen

by using 2-fold cross validation.

Test sets A and B in AURORA-2 are used for testing. Test

set A has the close noise condition which has the same type

of noise as the training data, while Test set B has open noise

condition which has completely different noise type as in the

training data. The clean condition training data set is used for

both training acoustic model for recognition and for building

the speech dictionary. In order to reduce mismatch between

the acoustic model and the testing data, we enhance both the

training data and the testing data using the same NMF en-

hancement approach.

The results are shown in Table 2 and Table 3. For Test set

A there is no significant improvement when semi-supervised

approach is applied. For Test set B, since the type of noise is

different from training data, the mismatch between the noise

exemplars and the test data causes great performance degrada-

tion of supervised-approach. For semi-supervised approach,

since no empirical value of noise is included in the exemplar

dictionary, the recognition rate got great improvement with

36% relative increase than the supervised approach. In order

to discover the effect of semi-supervised approach on each

specific type of noise, the different types of noise and recog-

nition rate in Test set A and B are listed in detail as Table

4.

From Table 4, when human noise is included in the test

data, semi-supervised approach would find it difficult to sepa-

rate the speech and noise components in the noisy data. Since

no prior knowledge of noise is included in the exemplar dic-

tionary, NMF would classify all the speech elements together

in a situation when human noise are included. In Test set A,

babble noise are pure human noise, which results in worst

recognition rate. In Test set B, human noise exists in both

restaurant and airport condition, which leads to lower recog-

nition rate of these two sets. The situation is also true to super-

vised approach due to the close characteristic between babble

noise and clean speech, which means exemplar approaches

are not good at reducing human noise.

5. SUMMARY AND CONCLUSION

Semi-supervised approach is proved to be much more robust

than supervised approach for unknown noise conditions. The

noise exemplars in semi-supervised approach is very flexi-

ble to absorb noise with variant characteristics, in regardless

of the prior knowledge of noise in training data. The semi-

supervised approach gains 36% relative increase than super-

vised approach in Test set B, which is an open noise condition

data set in AURORA-2 database. Meanwhile, we observe that

Table 2. Recognition rate of Test A

SNR Supervised Semi-supervised

clean 98.96 99.08

SNR20 96.00 97.99

SNR15 93.65 95.99

SNR10 89.35 90.37

SNR5 81.47 80.36

SNR0 65.65 62.66

SNR-5 42.07 41.07

Average 85.24 85.48

Table 3. Recognition rate of Test B

SNR Supervised Semi-supervised

clean 98.96 99.08

SNR20 97.39 98.05

SNR15 94.18 95.44

SNR10 84.98 89.32

SNR5 68.32 77.51

SNR0 47.62 60.78

SNR-5 28.00 40.92

Average 78.51 84.22
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Table 4. Average recognition rate of Test set A and Test B specified on types of noise

Test set A Subway Babble Car Exibition

Average 88.97 77.97 89.00 85.97

Test set B Restaurant Street Airport Train Station

Average 80.44 86.27 83.42 86.76

the recognition rate decreases when human noise is included

in the test data for both supervised and semi-supervised ap-

proach, due to the similarity between the human noise and

the speech. In our future work, we would try to solve this

problem using exemplar approach by combining some other

feature enhancement approaches.

6. APPENDIX: DERIVATION OF THE UPDATE

RULE

The update rules (9) and (10) are derived from the auxiliary

function of the first term of (8) by the similar manner to the

ordinary NMF [6]. The upper bound of d(y, Ax) is derived
as follows:

d(y, Ax)

=
∑

w,t

(

yw,t log
yw,t

L
∑

l=1

aw,lxl,t

− yw,t +
L

∑

l=1

aw,lxl,t

)

=
∑

w,t

(yw,t log yw,t−yw,t log
L

∑

l=1

aw,lxl,t−yw,t+
L

∑

l=1

aw,lxl,t)

≤
∑

w,t

(yw,t log yw,t−yw,t

L
∑

l=1

γl log
aw,lxl,t

γl

−yw,t+

L
∑

l=1

aw,lxl,t)

.
= Q(y, Ax, γ) s.t.

∑

l

γl = 1. (11)

In the above derivation, Jensen’s inequality is used for the

underlined term. The condition of equality is satisfied when

γ̂l =
aw,lxl,t

L
∑

l

aw,lxl,t

. (12)

Therefore, the upper bound function of (8) that should bemin-

imized is

Q(y, Ax, γ̂) + ||λ. ∗ x||p + η. ∗ d(N, Ân). (13)

Setting the derivative of (??) with respect to A and x, we

finally derive the following update rules for each element:

aw,j =

∑

t

yw,t
aw,jxj,t

P

l

aw,lxl,t

∑

t

xl,t

(14)

aw,n =

∑

t

yw,t
aw,nxn,t

P

l

aw,lxl,t
+ ηNw,n

∑

t

xn,t + η
(15)

xl,t =

∑

w

yw,t
aw,lxl,t

P

l

aw,lxl,t

∑

w

aw,l + λ
(16)

where aw,j is the element in speech exemplars, while aw,n

is the element in noise exemplars. xl,t refers to activation

matrix. Therefore, we can get the updating rules (9) and (10).
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