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ABSTRACT

We propose a novel approach to feature enhancement in

multi-channel scenario. Our approach is based on the in-

teracting multiple model (IMM), which was originally de-

veloped in single-channel scenario. We extend the single-

channel IMM algorithm such that it can handle the multi-

channel inputs under the Bayesian framework. The multi-

channel IMM algorithm is capable of tracking time-varying

room impulse responses and background noises by updating

the relevant parameters in an on-line manner. In various envi-

ronmental conditions, the performance gain of the proposed

method has been confirmed.

Index Terms— Robust speech recognition, multi-channel,

interacting multiple model (IMM), dereverberation

1. INTRODUCTION

The performance of an automatic speech recognition (ASR)

system is usually degraded when the input speech is distorted

by background noise or acoustic reverberation. In order to al-

leviate this performance degradation in adverse environments,

a variety of techniques have been developed e.g., speech en-

hancement, feature compensation and model adaptation algo-

rithms [1]-[8]. Though separate algorithms perform differ-

ently, their ultimate goal is to reduce the mismatch between

the degraded input signal and the trained recognition model

parameters. In this paper, we focus on the feature compen-

sation techniques which directly enhance the distorted input

feature vectors to match the characteristic of the training data

before being decoded by the acoustic recognition model.

In most cases the target speech and noise or other inter-

ference sources reside in different spatial locations. Multi-

ple microphone arrays are useful to extract the desired sig-

nal especially when each sound source is separated spatially.
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During the past several decades multi-channel based beam-

forming techniques such as the generalized sidelobe canceller

[9] have been proposed to attenuate the coherent interfering

sources and acoustic reverberation. Multi-channel based cri-

teria are also directly applied in the feature domain for robust

speech recognition [10].

In this paper, we propose a novel multi-channel feature

enhancement technique applied in the log-spectral domain.

In the proposed approach, we extend the interacting multiple

model (IMM) algorithm [7] originally designed in the single-

channel scenario so that it can fit to the multi-channel pro-

cessing. The proposed method has mainly two advantages.

First, no a prior knowledge of the room impulse response

(RIR) is needed. Second, the parameters concerned with the

acoustic reverberation and background noise are sequentially

updated in a frame-by-frame manner instead of utterance-by-

utterance or file-by-file basis for tracking their time-varying

nature. This type of real-time update of the RIR parameters

is very important in handling the possible movements of the

talker or microphones.

2. OBSERVATION MODEL IN MULTI-CHANNEL
REVERBERANT NOISY ENVIRONMENT

We consider a typical hands-free scenario for ASR in which

multiple microphones are used. The target speaker is located

in a certain distance from the microphones in an enclosed

room, which results in acoustic reverberation. Let yi[l] be the

signal obtained from the i-th microphone with l ∈ {0, 1, · · · }
denoting the time index. If x[l] is the target speech signal

and hi,l[p] represents the RIR from the target speaker to the i-
th microphone with corresponding tap index p ∈ {0, 1, · · · },

then

yi[l] =
∞∑
p=0

hi,l[p]x[l − p] + ni[l] (1)

where ni[l] is the background noise added to the i-th micro-

phone input.

By using the formulation presented in [7], we can rewrite

the relation of (1) in the logarithmic mel magnitude spectral
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coefficient (LMMSC) domain as follow:

yi,m = ln

(
L∑

τ=0

exp (xm−τ + hi,m,τ ) + exp (ni,m)

)
+ vi,m

(2)

where yi,m, xm, hi,m,τ , ni,m and vi,m respectively denote

the Q-dimensional LMMSC vectors of the reverberant noisy

speech, clean speech, time-variant log frequency response of

the reverberant acoustic path for a tap index τ which is as-

sumed to have finite length (L+1), i.e., hi,m,τ = −∞ for all

τ > L, background noise and approximation error of the ob-

servation model at the m-th frame which are collected at the

i-th microphone. The only difference of (2) from the formu-

lation derived in [7] is that we now add subscript i to identify

each microphone. The functions exp(·) and ln(·) in (2) are

applied component-wisely and we assume that the error dis-

tribution at each microphone is given by

vi,m = vm ∼ N (μv,Σv) (3)

in which N (μ,Σ) indicates a Gaussian PDF with mean vec-

tor μ and covariance matrix Σ.

3. MULTI-CHANNEL FEATURE ENHANCEMENT

3.1. A Bayesian framework

In our work, the clean speech component and the N log fre-

quency responses are jointly handled as a state vector zm
at the m-th frame where N indicates the number of micro-

phones. The core idea of our approach is to estimate the pos-

terior probability p(zm|�m
0 ) of the state vector

zm =
[
�′
m �′

1,m �′
2,m · · · �′

N,m

]′
(4)

�m =
[
x′
m x′

m−1 · · · x′
m−L

]′
(5)

�i,m =
[
h′
i,m,0 h

′
i,m,1 · · · h′

i,m,L

]′
(6)

conditioned on all the N observed reverberant noisy LMMSC

vectors

�m
0 = [y′

0 y
′
1 · · · y′

m]
′

(7)

ym =
[
y′
1,m y′

2,m · · · y′
N,m

]′
(8)

where the prime denotes the transpose of a vector or matrix,

�m and �i,m respectively mean a local clean speech and log

frequency response LMMSC trajectories consisting of (L+1)
consecutive frames at the i-th microphone. In the above for-

mulation, xm2
m1

=
[
x′
m1

x′
m1+1 · · · x′

m2

]′
denotes a subse-

quence of vectors from frame index m1 to m2 and ym means

N observations at the m-th frame concatenated to a single

vector.

A typical way to compute the posterior distribution of the

state vector zm based on a Bayesian inference is to recur-

sively compute the predictive distribution p(zm|�m−1
0 ) and

posterior distribution p(zm|�m
0 ) given the previous reverber-

ant noisy observations as follows:

p
(
zm|�m−1

0

)
=

∫
p
(
zm|zm−1,�

m−1
0

)
× p

(
zm−1|�m−1

0

)
dzm−1 (9)

p (zm|�m
0 ) =

p
(
ym|zm,�m−1

0

)
p
(
zm|�m−1

0

)
∫
p
(
ym|zm,�m−1

0

)
p
(
zm|�m−1

0

)
dzm

.

(10)

If both p
(
zm|�m−1

0

)
and p (zm|�m

0 ) are assumed to be

Gaussian distributions, it is sufficient to revise the statistical

moments up to the second-order which are defined as follows:{
ẑm|m−1 = E

[
zm|�m−1

0

]
Σ̂zm|m−1

= E
[(
zm − ẑm|m−1

) (
zm − ẑm|m−1

)′ |�m−1
0

]
(11){

ẑm|m = E [zm|�m
0 ]

Σ̂zm|m = E
[(
zm − ẑm|m

) (
zm − ẑm|m

)′ |�m
0

]
(12)

where E[·] indicates expectation. Interested readers are re-

ferred to [7] for further information.

3.2. Prior models

In this section, the prior models for clean speech, RIR, and

background noise are described. As mentioned in [7], the a
priori clean speech distribution is assumed as a mixture of K
Gaussians to approximate a high degree of speech dynamics

as follows:

p(�m) =

K∑
j=1

p(γm = j)N (
�m;μj ,Σj

)
(13)

where γm ∈ {1, 2, · · · ,K} denotes the index of the mixture

component at the m-th frame, and p(γm = j), μj and Σj

represent the weight, mean vector and covariance matrix of

the j-th Gaussian distribution respectively.

We assume that the i-th log frequency response �i,m

at the m-th frame is statistically independent of the clean

speech and background noise features. Since the RIR is non-

stationary, the parameter estimate for �i,m must be constantly

updated to track its time evolution. In our work, we exploit

a random walk process which is the simplest solution for

predicting the next state as given by

�i,m = �i,m−1 +w�,i,m (14)

w�,i,m = w�,m ∼ N (
0Q(L+1)N , σ2

�
IQ(L+1)N

)
(15)

where 0d represents the zero vector with dimension d and Id
denotes the identity matrix of size d × d. When σ2

�
is small,

this model is well suited to a slowly evolving RIR environ-

ment.

The characteristics of the background noise are very di-

verse. It is difficult to train all kinds of the background noise
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in advance. In a short period before active speech activity

occurs, however, we can assume that the background noise

only exists and its characteristic is stationary. Furthermore,

the complexity of the background noise model needs to be

quite low to allow a fast and computationally efficient on-

line tracking. For these reasons, we employ a single Gaussian

background noise model as given by

ni,m ∼ N
(
μni,m

,Σni,m

)
(16)

where the mean vector μni,m
and covariance matrix Σni,m

are unknown and should be estimated during the environment

compensation procedure.

3.3. State transition formulation

As in [7], the transition process of the state vector zm for the

j-th Gaussian mixture component can be simply structured as

follows:

zm = A(j)zm−1 + b(j)
m (17)

with

A(j) =

⎡
⎢⎢⎢⎢⎢⎣

AB−1
OQ

IQ OQ ··· OQ

OQ IQ ··· OQ

...
. . .

...
...

OQ ··· IQ OQ

O

O′ IQ(L+1)N

⎤
⎥⎥⎥⎥⎥⎦ (18)

b(j)
m ∼ N

(
μ

(j)
b ,Σ

(j)
b

)
(19)

where

A = [ Cov(xm,xm−1) Cov(xm,xm−2) ··· Cov(xm,xm−L) ] (20)

B =

⎡
⎢⎣

Cov(xm−1,xm−1) Cov(xm−1,xm−2) ··· Cov(xm−1,xm−L)
Cov(xm−2,xm−1) Cov(xm−2,xm−2) ··· Cov(xm−2,xm−L)

...
...

. . .
...

Cov(xm−L,xm−1) Cov(xm−L,xm−2) ··· Cov(xm−L,xm−L)

⎤
⎥⎦

(21)

and Cov(a, b) denotes the covariance between two vectors a
and b. In addition,

μ
(j)
b =

⎡
⎢⎢⎢⎣
μ̃b

0Q

...

0Q

⎤
⎥⎥⎥⎦ , Σ

(j)
b =

⎡
⎢⎢⎢⎣

Σ̃b OQ ··· OQ

OQ OQ ··· OQ

...
...

. . .
...

OQ OQ ··· OQ

O

O′ σ2
�
IQ(L+1)N

⎤
⎥⎥⎥⎦

(22)

Postprocessing

Estimation of Clean 
Feature

Iterative Linearization 
and Kalman Update

Preprocessing

Predictive State 
Estimation

All mixture components

Fig. 1. A block diagram of feature enhancement algorithm

where

μ̃b = E[xm]−AB−1

⎡
⎢⎢⎢⎣
E[xm−1]
E[xm−2]

...

E[xm−L]

⎤
⎥⎥⎥⎦ (23)

Σ̃b = Cov(xm,xm)−AB−1A′ (24)

with OQ and O respectively denoting a zero matrix with size

Q×Q and Q(L + 1)×Q(L + 1)N . The above formulation

given by (17)-(24) is an extension of the state transition model

derived in [7] to the case of multiple RIRs.

3.4. Function linearization

It is difficult to estimate directly the clean speech feature

vector xm and all the log frequency responses hi,m,τ of N -

channel inputs from the speech distortion model (2) due to its

nonlinearity. To alleviate its difficulty, we apply the piecewise

linear approximation to the given nonlinear function by using

Taylor series expansion. The first order form of Taylor series

expansion at the i-th microphone input feature is given as in

the following:

fi (zm,ni,m) = ln

(
L∑

τ=0

exp (xm−τ + hi,m,τ ) + exp (ni,m)

)

(25)

≈ Gi,mzm +Hi,mni,m + qi,m (26)

ym =

⎡
⎢⎢⎢⎣
y1,m

y2,m

...

yN,m

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
G1,m

G2,m

...

GN,m

⎤
⎥⎥⎥⎦ zm +

⎡
⎢⎢⎢⎣

H1,m 0Q · · · 0Q

0Q H2,m · · · 0Q

0Q 0Q
. . . 0Q

0Q 0Q · · · HN,m

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
n1,m

n2,m

...

nN,m

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
q1,m

q2,m

...

qN,m

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
v1,m

v2,m

...

vN,m

⎤
⎥⎥⎥⎦ (30)
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Fig. 2. Averaged word accuracies according to the reverbera-

tion time at SNR 5 dB

where

Gi,m =
[

∂fi
∂�m

′ · · ·0′
Q(N+1) · · · ∂fi

∂�i,m

′ · · ·0′
Q(N+1) · · ·

]
(27)

Hi,m =
∂fi

∂ni,m
(28)

qi,m = fi
(
z◦m,n◦

i,m

)−Gi,mz◦m −Hi,mn◦
i,m (29)

and z◦m and n◦
i,m are constant vectors corresponding to the

center of vector Taylor series expansion. In our work, we ap-

ply the statistical linear approximation [11] method for linear

approximation. The matrix form of all the N observed rever-

berant noisy inputs can be shown as in (30).

3.5. Feature enhancement algorithm

For the clean speech estimate, a parallel extended Kalman fil-

tering approach is applied in our algorithm, which is based on

the IMM techniques [12]. The block diagram of the feature

enhancement algorithm is given in Fig. 1, which is described

in [7]. Unlike the single-channel algorithm, we form a su-

per vector to accomodate all the multiple input features and

utilize their correlation.

4. EXPERIMENTS

The proposed approach was applied to a connected digit

recognition task using TI digits corpus. In our implementa-

tion, we employed the conventional front-end feature speci-

fied in the ETSI standard [13]. The baseline system of ASR

was configured as proposed in [14], which was implemented

by HTK software [15] for training and decoding. We assumed

the clean training condition for the acoustic model of speech

recognition in accordance with our purpose of estimating the

clean feature vectors.

To simulate a reverberant noisy environment, a small rect-

angular room of dimensions 6 m × 4 m × 3 m (length × width

× height) was configured. In our experiments, we used two

0
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Fig. 3. Averaged word accuracies according to the SNR at

reverberation 500 ms

omni-directional microphones (N = 2) placed at the height

of 1.5 m. The distance between the two microphones was

fixed at 10 cm. For the background noise, white noise was

used as the diffuse noise source. In order to simulate various

environmental conditions, we varied the distance between the

target speaker and microphones from 2 m to 4 m. The tar-

get speaker was positioned at 10◦ deviated from the center

of the microphones. The RIRs were simulated by Allen and

Berkley’s image method [16] using Habets’s software [17].

The reverberation range was varied from 300 to 700 ms and

all the conditions were tested in the SNR range 0 to 20 dB. For

the results of single-channel based techniques, we took the av-

erage of the results obtained from the two separate channels.

In our proposed method, there were a lot of parameters to be

tuned. Due to the computational issue, we used L = 2 and

K = 16 for all the experiments. For convenience, we denote

the conventional single-channel algorithm by IMM-1ch and

the proposed two-channel algorithm by IMM-2ch.

We present the averaged word accuracy results according

to the reverberation time and SNR in Figs. 2 and 3, respec-

tively. We calculated the average of the results obtained from

the distances. From the results of Fig. 2, we can see that the

performance degradation was severe as the reverberation time

became longer due to the dispersive effect of reverberation.

Although our proposed algorithm did not use any explicit in-

formation on the reverberation time, better performance was

achieved. From a number of experiments, we can see that

the proposed algorithm outperformed the single-channel al-

gorithm.

5. CONCLUSION

In this paper, we have proposed a novel approach to estimate

the clean feature vectors in multi-channel environment, which

was obtained by extending the single-channel IMM algorithm

to a multi-channel version. The proposed method is based

on a sequential Bayesian inference framework. From various

experiments in reverberant noisy environments, it has been

confirmed that the proposed algorithm outperformed the tra-

ditional single-channel algorithm.

1762



6. REFERENCES

[1] M. Miyoshi and Y. Kaneda, “Inverse filtering of room

acoustics,” IEEE Trans. Acoust., Speech and Signal Pro-
cess., vol. 36, no. 2, pp. 145-152, Feb. 1988.

[2] T. Nakatani, B. -H. Juang, T. Yoshioka, K. Kinoshita,

M. Delcroix, and M. Miyoshi, “Speech dereverbera-

tion based on maximum-likelihood estimation with time-

varying Gaussian source model,” IEEE Trans. Audio,
Speech and Lang. Process., vol. 16, no. 8, pp. 1512-1527,

Nov. 2008.

[3] M. Miyoshi, M. Delcroix, K. Kinoshita, T. Yoshioka, T.

Nakatani, and T. Hikichi, “Inverse filtering for speech

dereverberation without the use of room acoustics infor-

mation,” in Speech Dereverberation, P. A. Naylor and N.

D. Gaubitch, Eds. Springer, 2010.

[4] K. Lebart, J. M. Boucher, and P. N. Denbigh, “A new

method based on spectral subtraction for speech derever-

beration,” Acta Acoustica, vol. 87, no. 3, pp. 359-366,

2001.

[5] K. Kinoshita, M. Delcroix, and T. Nakatani, “Suppression

of late reverberation effect on speech signal using long-

term multiple-step linear prediction,” IEEE Trans. Audio,
Speech and Lang. Process., vol. 17, no. 4, pp. 534-545,

May 2009.

[6] E. Habets, S. Gannot, and I. Cohen “Late reverberant

spectral variance estimation based on a statistical model,”

IEEE Signal Process. Lett., vol. 16, pp. 770-773, Sep.

2009.

[7] C. W. Han, S. J. Kang, and N. S. Kim, “Reverberation

and noise robust feature compensation based on IMM,”

IEEE Trans. Audio, Speech and Lang. Process., vol. 21,

no. 8, pp. 1598-1611, Aug. 2013.

[8] H. -G. Hirsch and H. Finster “A new approach for the

adaptation of HMMs to reverberation and background

noise,” Speech Commun., vol. 50, no. 3, pp. 244-263,

2008.

[9] S. Markovich, S. Gannot, and I. Cohen “Multichannel

eigenspace beamforming in a reverberant noisy envi-

ronment with multiple interfering speech signals,” IEEE
Trans. Audio, Speech, and Lang. Process., vol. 17, no. 6,

pp. 1071-1086, Aug. 2009.

[10] R. Rotili, E. Principi, S. Cifani, S. Squartini, and F.

Piazza, “Multichannel feature enhancement for robust

speech recognition,” in Speech Technologies, I. Ipsic,

Eds. InTech, 2011.

[11] N. S. Kim, “Statistical linear approximation for environ-

ment compensation,” IEEE Signal Process. Lett., vol. 5,

no. 1, pp. 8-10, Jan. 1998.

[12] N. S. Kim, “IMM-based estimation for slowly evolving

environments,” IEEE Signal Process. Lett., vol. 5, no. 6,

pp. 146-149, Jun. 1998.

[13] ETSI Std. Document, “Speech processing, transmission

and quality aspects (STQ); distributed speech recogni-

tion; front-end feature extraction algorithm; compression

algorithm,” ETSI ES 201108 V1.1.3, Sep. 2003.

[14] D. Pearce and H. -G. Hirsch, “The Aurora experimen-

tal framework for the performance evaluation of speech

recognition systems under noisy conditions,” Proc. Int.
Conf. Spoken Lang. Process., Oct. 2000.

[15] S. Young et al., The HTK book, Cambridge University

Engineering Dept., 2006.

[16] J. B. Allen and D. A. Berkley “Image method for effi-

ciently simulating small-room acoustics,” J. Acoust. Soc.
Amer., vol. 65, no. 4, pp. 943-950, Apr. 1979.

[17] E. habets, “Room impulse response (RIR)

generator,” Sep. 2010 [On-line]. Available:

http://home.tiscali.nl/ehabets/rir generator.html

1763


