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ABSTRACT

This paper presents the effect of mean normalization to var-

ious types of cepstral coefficients for robust speech recogni-

tion in noisy environments. Although the cepstral mean nor-

malization (CMN) technique was originally designed to com-

pensate channel distortion, it has also been proved that the

CMN also improves recognition accuracy in additive noisy

environment. However, no one has yet considered the interac-

tion of CMN with spectral mapping functions required for ex-

tracting cepstral features. This paper investigates the impact

of CMN to the speech recognition system depending on the

types of spectral mapping function by mathematically analyz-

ing the amount of spectral distortion between clean and noisy

conditions. The analytic result is also confirmed by compar-

ing the type of recognition error patterns in automatic speech

recognition experiment with Aurora 2 database. Experimen-

tal results show that the performance improvement by adopt-

ing CMN becomes significant if the logarithmic function is

replaced with the appropriate setting of fractional power map-

ping function. Especially, the deletion errors are dramatically

reduced.

Index Terms— Robust speech recognition, CMN

1. INTRODUCTION

The performance of automatic speech recognition (ASR) sys-

tems severely degrades in noise environment mainly because

of the mismatching between training and test conditions.

Many algorithms have been proposed to minimize the mis-

match by taking signal domain, feature domain, or model do-

main approaches [1]-[13]. Speech enhancement techniques

such as Wiener filter and spectra subtraction are typical ex-

amples for the signal domain approach [5][6]. Introducing

a new feature or a compensation processing to features such

as power normalized cepstral coefficients (PNCCs) and rela-

tive spectral perceptual linear predictive (RASTA-PLP) is an

example of the feature domain approach [1][2][7]. Adapting

statistical model parameters to match the ASR system with

distorted environment such as using a vector Taylor series

(VTS) belongs to the model domain approach [9][10].

Although recent works on robust speech recognition are

somewhat biased to model domain approaches, both signal

and feature domain approaches are still important because the

unified or merged approach could be more beneficial to over-

come the ASR problems in noisy environment. This paper

focuses on the feature domain algorithm, especially tries to

analyze the impact of mean normalization to various types of

cepstral coefficients.

The mel-frequency cepstral coefficient (MFCC) has been

popularly used for ASR systems thanks to its good perfor-

mance in various environments [15]. Although many re-

searchers claimed that their features were better than MFCC

in certain conditions, they could not be used for wide applica-

tions. As the important of robustness in noisy environments

becomes increased, however, a slightly modified version of

MFCC has been applied to real applications nowadays. The

PNCC that utilizes the fractional power function instead of

the natural logarithm function used for MFCC is a typical

example [1][2]. It proved that the recognition accuracy could

be improved in noisy conditions compared to conventional

MFCC and PLP features. By excluding the additional noise

reduction module that the PNCC extraction process requires,

it was verified that the recognition accuracy increased only

if the CMN process was included [12]. In other words,

only replacing the spectral non-linear mapping function with

the fractional power function was not meaningful in noisy

conditions. From the result, it is clear that there is a close

interaction between the type of spectral mapping function

used and the CMN technique. However, the interaction be-

tween CMN and spectral mapping functions has never been

considered in earlier studies.

This paper further investigates the impact of CMN to the

ASR system depending on the types of the spectral mapping

function. At first, the spectral mapping function is extended

to the form of generalized logarithmic function to make the

mathematical analysis be easier. Then, the spectral distortion

between noisy and clean speech is measured. As we can ex-

pect from the characteristic of generalized logarithmic func-

tion, the amount of spectral distortion varies depending on the

type of spectral mapping functions and SNR conditions. In
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addition, the distribution of recognition error types is investi-

gated when CMN is combined or not. To verify the analysis

results, an ASR system is designed and tested with Aurora

2 database in various noisy environments. Experimental re-

sults confirm that the amount of performance improvement

varies depending on the type of spectral mapping function.

The best performance can be obtained by properly setting the

type of non-linear spectral mapping function with including

CMN, of which conclusion is in the same line with the pre-

vious study that the power normalized cepstral coefficients

(PNCCs) show better performance than MFCCs only if the

CMN processing is combined.

The layout of the paper is as follows. Section 2 shows the

performance comparison of MFCC and PNCC. In Sec. 3, the

fractional power function based ASR system is represented.

Section 4 analyzes the spectral distortion between the noisy

speech and the clean speech. The recognition error patterns

are described in Sec. 5. Finally, conclusion is included in

Section 6.

2. COMPARISON BETWEEN MFCCS AND PNCCS

The procedure for extracting PNCCs includes the three main

modules [1][2]: the noise reduction, the replacement of spec-

tral mapping function, and the CMN. The impact of each

module to word accuracy in noisy environment is compared to

MFCC based ASR system in Fig.1. It indicates that the ASR

performance is significantly improved by applying the noise

reduction (denoted NR in figure) or CMN technique. How-

ever, when the CMN is not included, there is no big differ-

ences between the MFCC based system and the PNCC based

system. This means that the replacement of spectral mapping

function does not improve the ASR performance when CMN

is not included.

Next section investigate the impact of mean normalization

to the power spectral mapping function based ASR system by

measuring the spectral distortion between the noisy speech

and the clean speech. In addition, the error patterns are also

analyzed in Sec.5.

3. POWER FUNCTION BASED ASR SYSTEM

As a spectral mapping function, the generalized logarithmic

function that is a general form of the logarithmic function is

adopted. In this section, the generalized logarithmic function

is described, and its impact to the spectrum in noisy environ-

ments is analyzed.

3.1. Generalized Logarithmic Function

In [14], the generalized logarithmic function is defined by

fγ (x) =
1

γ
(xγ − 1) , γ 6= 0, (1)
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Fig. 1. Comparing the ASR performance.
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Fig. 2. Generalized logarithmic function for various value of

γ.

where γ is a real value of |γ| ≤ 1. if γ approaches 0, the gen-

eralized logarithmic function fγ(x) is equivalent to the natu-

ral logarithmic function, which was mathematically proved in

[14]:

lim
γ→0

fγ(x) = log x. (2)

Fig.2 shows the curves of a generalized logarithmic function

fγ(x) for several values of γ. It is observed that if γ is close

to zero, the corresponding curve is close to the natural loga-

rithmic function. In this paper, γ is set to 1/15, which is the

value of maximizing the performance of PNCC in [2].

3.2. Generalized logarithmic spectrum of noisy speech

Given the spectrum of the clean speech X(l), the additive

noise D(l), and the channel noise H(l), the spectrum of ob-

served signal Y (l) at lth frame is represented by

Y (l) = X(l)H(l) +D(l), (3)

where l denotes the frame index. For simplicity, the frequency

bin index is omitted. If the noise reduction process is in-
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cluded, the spectrum of enhanced speech is represented by

YNR (l) = X (l)H (l) +D (l)−N (l)

= X (l)H (l) + e (l) ,
(4)

where N(l) and e(l) are the estimated noise components and

the residual noise components, respectively. Since the resid-

ual noise is assumed as an additive term, the signal model of

including the noise reduction module is equivalent to Eq.(3).

After taking the generalized logarithmic function and

some manipulation, the generalized log-spectrum in noisy

environments is obtained by

Y γ (l) = fγ (Y (l))

= Xγ(l) +Nγ
a (l) +Nγ

c (l),
(5)

where

Nγ
a (l) = (γDγ(l) + 1) gγ (X(l)H(l)/D(l)) , (6)

Nγ
c (l) = (γXγ(l) + 1)Hγ(l), (7)

and

gγ(x) = fγ(x+ 1)− fγ(x). (8)

The distortion caused by additive noise in the generalized log-

spectrum is represented by Nγ
a (l) that depends on signal-to-

noise ratio (SNR). Nγ
c (l) is the distortion caused by chan-

nel noise, which depends on the speech components and the

channel noise components. In addition, their dependency is

determined by the value of γ.

When CMN is combined, the generalized logarithmic

spectrum is expressed by

Ȳ γ(l) = Y γ(l)− E {Y γ(l)} . (9)

Actually, Eq.(9) does not take into account the influence of

liftering. However, since the liftering is equivalent to just

spectral smoothing process and DCT is linear, it is reasonable

to analyze the impact of CMN in the generalized log-spectral

domain instead of the quefrency domain.

4. SPECTRAL DISTORTION

To analyze the distortion quantitatively, the distance between

the generalized cepstral coefficients of noisy speech and clean

speech is measured. Given the value of γ, the distortion in the

generalized log-spectral domain at the lth analysis frame is

defined as

ēγ(l) = Ȳ γ(l)− X̄γ(l). (10)

Substituting Eq.(5) and Eq.(9) into Eq.(10), we obtain

ēγ(l) = ēγa(l) + ēγc (l), (11)

where

ēγa(l) = Nγ
a (l)− E {Nγ

a (l)} , (12)
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Fig. 3. Normalized distortion in the generalized spectral co-

efficients for perturbed values of SNRs.

and

ēγc (l) = Nγ
c (l)− E {Nγ

c (l)} . (13)

In this paper, it is assumed that the length of the channel noise

is much shorter than a analysis window. Thus, we only focus

on analyzing the influence of additive noise.

Fig. 3 compares the distortion eγa(l) in the case of the

logarithmic function based system (γ = 0) and the power

function based system (γ = 1/15) when CMN is included.

The distortion is computed by measuring Euclidean distance

between clean speech and noisy speech in the generalized log-

spectral domain, and it is normalized by the dynamic range of

the generalized log-spectral coefficients of the corresponding

clean speech.

In Eq.(6) and Eq.(12), it indicates that ēγa(l) depends on

SNRs, i.e., inversely proportional to SNRs at low SNRs. Note

that when CMN is not used, there is no considerable differ-

ence between the logarithmic function based system and the

power function based system. After applying the CMN, how-

ever, the distortion at low SNR region is reduced, but the dis-

tortion at high SNR region is even increased. It may be inter-

preted that the CMN processing introduces oversubtraction at

the speech dominant region. However, in the case of power

function based system, the distortion due to oversubtraction is

smaller than the one with MFCC. Accordingly, it concludes

that the generalized cepstral coefficients reduce the oversub-

traction caused by adopting the mean normalization process.

In the next subsection, we investigate the impact of distortion

variation to the recognition error patterns depending on the

type of spectral nonlinear mapping function used.

5. RECOGNITION ERROR PATTERN

To investigate the impact of the distortion to ASR systems

addressed in the previous subsection, we count the recogni-

tion errors by dividing them into three types: deletion error,

substitution error, and insertion error. A deletion error occurs

when a word is recognized as its neighboring word or as a

non-speech segment. An insertion error occurs when a word
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Fig. 4. Word accuracy and error patterns with and without

using CMN and with either a natural logarithmic function

(MFCC) or a fractional power function (PNCC).

is recognized as multiple words or the non-speech segment is

recognized as words.

The recognition experiments are conducted with Aurora

2 database that is a noisy speech database distributed by

European telecommunications standards institute (ETSI) for

the purpose of defining distributed speech recognition stan-

dard [16]. Its source speech is obtained by downsampling

the database of TIDIGITS consisting of English connected

digit strings [16]. The different types of noise signals are

artificially added to clean speech to generate signals having

various SNRs.

The simulation task is done by the method introduced in

[16] with HTK toolkit v3.4. The recognizer has eleven whole

word HMMs with 16 states and 3 Gaussian mixtures. Two

pause models, sil and sp, are defined. The sil model consists

of 3 states and each state consists of 6 Gaussian mixtures.

The sp model consists of a single state which is tied with the

middle state of the sil model.

Fig.4 shows the error patterns for the case of combining

CMN or not. The results are obtained by taking an average

value for all types of noise. Note that in case CMN is not

combined, there is no big difference between the logarithmic

function based ASR system and the fractional power function

based ASR system. In addition, the number of insertion er-

rors is significantly large, because the noise segments in the

non-speech region are recognized as words. By combining

CMN technique, the insertion errors are reduced. However,

reducing insertion errors leads to the increment of deletion

errors, which results from the distortion caused by oversub-

traction as shown in Fig.3. It can be intuitively understood
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Fig. 5. Word accuracy and error patterns when noise reduc-

tion is included.

that there are many cases where the speech dominant regions

are misrecognized as the non-speech region due to oversub-

traction. The distortion caused by oversubtraction can be re-

duced by adopting a fractional power mapping function as

shown at the previous section. It results in the fact that the

increment of deletion errors due to the oversubtraction is sig-

nificantly reduced in contrast to MFCCs, which is shown in

Fig.4. While the substitution errors and the insertion errors

are slightly increased, the overall word accuracy is still sig-

nificantly increased if the fractional power function is used.

Fig.5 shows the error patterns when the noise reduction

process based on asymmetric filtering used in [2] is included

in the procedure of feature extraction. The impact of CMN

to the fractional power function based ASR system are same

to the case where the noise reduction is not adopted. Since

the noise reduction process considerably suppresses the noise

components, the performance improvement by replacing the

spectral mapping function is slightly reduced.

6. CONCLUSION

In this work, we presented the impact of the mean normal-

ization to the power mapping function based ASR system

in noisy environment. Only replacing the natural logarithm

function with the power function did not improve the word

accuracy. Its impact was became significant when the mean

normalization technique is combined. The analysis on the

spectral distortion and error pattern has demonstrated con-

vincingly that the fractional power function based ASR sys-

tem is very effective to minimize the deletion errors which is

unavoidable if CMN is adopted.
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