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ABSTRACT

A missing intensity restoration method via perceptually optimized
subspace projection based on entropy component analysis (ECA) is
presented in this paper. The proposed method calculates the optimal
subspace of known patches within a target image based on structural
similarity (SSIM) index, and the optimal bases are determined based
on ECA. Then missing intensity estimation whose results maximize
the SSIM index is realized by using a projection onto convex sets
(POCS) algorithm whose constraints are the obtained subspace and
known intensities within the target image. In this approach, a non-
convex maximization problem for calculating the projection onto the
subspace is reformulated as a quasi-convex problem, and the restora-
tion of the missing intensities becomes feasible. Experimental re-
sults show that our restoration method outperforms previously re-
ported methods.

Index Terms— Missing intensity restoration, image quality as-
sessment, entropy component analysis, POCS algorithm.

1. INTRODUCTION

Many researchers have proposed missing intensity restoration meth-
ods since this study affords a number of fundamental applications
[1]–[15]. A pioneering work of missing intensity restoration was
proposed by Efros et al [4]. Furthermore, in recent years, Drori et
al. and Criminisi et al. have developed a fragment-based restoration
method [5] and an exemplar-based method [6, 7], respectively, and
their methods became benchmarking methods in this field. From a
characteristic that the restoration of missing intensities is one of in-
verse problems, several methods using low-dimensional subspaces
for deriving inverse projection to estimate missing intensities have
been proposed. For example, Amano et al. proposed an effective
PCA-based method that estimates missing textures by back projec-
tion for lost pixels [9]. Furthermore, by introducing the kernel meth-
ods into PCA [16, 17], its improvement can be also realized [10, 11].
Recently, sparse representation-based image restoration has inten-
sively been studied [12]–[15], [18, 19]. Mairal et al. proposed a
representative work based on the sparse-representation [12], and Xu
et al. also proposed an improved exemplar-based method by using
the sparse representation [15].

In most existing works using low-dimensional subspaces, miss-
ing intensities are restored by projection onto these subspaces gener-
ated based on minimization of mean square error (MSE). Although
the MSE is the most popular metric used as a quality measure, it has
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been reported that MSE cannot reflect perceptual qualities [20, 21].
Recently, there have been proposed many image quality assessment
algorithms [22]–[26]. Among them, the structural similarity (SSIM)
index [26] is well known as a representative measure, and it is re-
ported that the SSIM index is superior to the MSE and its variants
for several image processing applications [27, 28]. Therefore, by
using the SSIM index, successful restoration using perceptually op-
timized subspaces can be expected.

In this paper, we present a new missing intensity restoration
method via perceptually optimized subspace projection based on en-
tropy component analysis (ECA). The proposed method performs
the generation of the subspace optimized in terms of the SSIM index
for estimating missing intensities within a target image. In this ap-
proach, ECA-based optimal orthonormal basis selection is adopted
since it is reported in [29] that the bases selected by ECA is supe-
rior to PCA-based bases in several tasks. Then the proposed method
enables the missing intensity restoration by using a projection onto
convex sets (POCS) algorithm [30] whose constraints are the ob-
tained subspace and known intensities within the target image. Note
that in this approach, a non-convex problem for calculating the pro-
jection onto the subspace is reformulated as a quasi-convex problem.
Consequently, we can derive the optimal solution based on the SSIM
index, and successful missing intensity restoration is expected.

2. SSIM INDEX

The SSIM index is proposed as a similarity between two vectors x1

and x2 (∈ Rn), and its simplified definition is shown as follows:

SSIM(x1, x2) =

(
2µx1µx2 +C1

) (
2σx1 ,x2 +C2

)(
µ2

x1
+ µ2

x2
+C1

) (
σ2

x1
+ σ2

x2
+C2

) ,
where µxi and σ2

xi
(i = 1, 2) are respectively the mean and the vari-

ance of xi. Furthermore, σx1 ,x2 is the cross covariance between x1

and x2. The constants C1 and C2 are necessary for avoiding instabil-
ity when the denominators are very close to zero. The SSIM index
is defined by separately calculating three similarities in terms of lu-
minance, variance and structure, which are derived on the basis of
the human visual system (HVS) not accounted for by MSE. There-
fore, perceptually optimized restoration can be expected by using
this quality measure.

3. MISSING INTENSITY RESTORATION VIA
SSIM-BASED ECA SUBSPACE PROJECTION

The missing intensity restoration method via SSIM-based ECA sub-
space projection is presented in this section. In the proposed method,
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we clip a patch f (w × h(= N) pixels) including missing areas Ω.
From known areas Ω̄ within the target patch f , we try to restore
the intensities of its missing areas Ω by using the subspace obtained
from the other known parts within the target image. For the follow-
ing explanation, we define two vectors, whose elements are respec-
tively intensities within f and Ω̄, as x(∈ RN) and y(∈ RNΩ̄ ), where
NΩ̄ is the number of pixels within the areas Ω̄.

First, the proposed method performs the estimation of the ECA
subspace optimized in terms of the SSIM index (See 3.1). Fur-
thermore, we perform the missing intensity restoration using the
POCS algorithm whose constraints are the obtained subspace and
the known intensities within Ω̄ (See 3.2).

3.1. SSIM-Based ECA Subspace Estimation Algorithm

In order to obtain samples for generating the subspace, we clip
known patches fi (i = 1, 2, · · · , L) whose size is the same as that of
f from the target image in the same interval. Then, for each patch fi,
we define a vector xi (∈ RN), which corresponds to x. First, from xi

(i = 1, 2, · · · , L), we calculate M orthonormal bases which span the
subspace optimized in terms of the SSIM index, where M is smaller
than N. In this approach, it is difficult to simultaneously obtain
all bases optimized with the SSIM index. Therefore, we adopt the
simplest algorithm that selects the optimal bases one by one, and it
is similar to several matching pursuit algorithms [31, 32, 33]. The
details of mth (m = 1, 2, · · · ,M) optimal basis calculation are shown
below.

In mth iteration, i.e., mth optimal basis calculation, we first de-
fine the following vector approximating xi (i = 1, 2, · · · , L):

x(m)
i =

[
Û(m−1) u(m)

] [a(m−1)
i
a(m)

i

]
,

where Û(m−1) = [û(1), û(2), · · · , û(m−1)] is a fixed N × (m − 1) matrix
which contains m− 1 bases previously calculated in m− 1 iterations.
We estimate the optimal orthonormal basis û(m) of u(m) which pro-
vides the best representation performance for all known patches fi

(i = 1, 2, · · · , L) based on the SSIM index. Specifically, it can be
calculated by solving the following problem:

{
û(m), â(m)

}
= arg max

u(m) ,a(m)

L∑
i=1

SSIM(xi, x(m)
i )

subject to ||u(m)||2 = 1
u(m)′u(l) = 0 (l = 1, 2, · · · ,m − 1), (1)

where a(m) is a set of a(m)
1 , a

(m)
2 , · · · , a

(m)
L , and a(m)

i = [a(m−1)
i

′, a(m)
i ]′

(i = 1, 2, · · · , L). Furthermore, vector/matrix transpose is denoted
by the superscript ′. The optimal basis û(m) and the optimal coef-
ficient vectors â(m)

i (i = 1, 2, · · · , L) are calculated by applying the
constrained steepest ascend algorithm to Eq. (1). The steepest as-
cend algorithm does not necessarily provide the global optimal so-
lution in Eq. (1), but this algorithm can save the computation cost
compared to the algorithm shown in the following subsection. From
this reason, we utilize this scheme in the proposed method. By it-
erating the above procedures M times, we can obtain the optimal M
orthonormal bases û(m) (m = 1, 2, · · · ,M) based on the SSIM index.

From the obtained M orthonormal bases û(m) (m = 1, 2, · · · ,M),
we further select D bases ûd (d = 1, 2, · · · ,D) by using the algorithm
in ECA [29]. Specifically, D bases, whose values

∑L
i=1

(
û(m)′xi

)2

based on Renyi quadratic entropy are larger than those of the other
bases, are selected as the optimal bases ûd (d = 1, 2, · · · ,D). ECA

can select the optimal bases in such a way that they can success-
fully represent cluster structures of the target samples. Since the
target image contains several kinds of textures, i.e., the samples xi

(i = 1, 2, · · · , L) have cluster structures, we introduce ECA into the
selection of the optimal orthonormal bases. Finally, we obtain the
matrix Û = [û1, û2, · · · , ûD] including these selected bases, i.e., the
optimal subspace.

3.2. Missing Intensity Restoration Algorithm

For restoring the missing areas Ω within the target patch f , the pro-
posed method uses the POCS algorithm [30] whose constraints are
shown below.
[Constraint 1]
Since the intensities of the vector y within Ω̄ are all known, their
values are fixed in the vector x, i.e., y = Ex is satisfied, where E is a
matrix extracting only the known intensities in Ω̄.
[Constraint 2]
The vector x of the target patch f is in the subspace spanned by the
orthonormal bases ûd (d = 1, 2, · · · ,D).

The proposed method performs the projection onto these two
constraints iteratively to obtain the final estimation result x̂ of the
unknown vector x. Note that for each iteration t, we have to cal-
culate the SSIM-based projection onto the subspace spanned by the
bases ûd (d = 1, 2, · · · ,D). Specifically, in tth iteration, we have to
estimate the optimal linear combination

x̂(t) = Ûâ(t) (2)

approximating the target vector x(t) which satisfies Constraint 1,
where

â(t) = arg max
a(t)

SSIM
(
x(t), Ûa(t)

)
. (3)

In the above equation,

SSIM
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σ2
x(t) + σ

2
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×

[
2x(t)′HÛa(t) + NC2

x(t)′Hx(t) + a(t)′Û′HÛa(t) + NC2

]
, (4)

and µÛ =
1
N Û′1, where 1 = [1, 1, · · · , 1]′ is an N × 1 vector. Fur-

thermore, H = I − 1
N 11′ is an N × N centering matrix, where I is the

identity matrix.
Since Eq. (4) is a nonconvex function of a(t), we introduce

the calculation scheme shown in [27] for converting it into a quasi-
convex problem. First, we note the first term in Eq. (4) is a function
only of µÛ

′a(t)
(
= ρ(t)

)
. Thus, the problem in Eq. (3) is rewritten as

follows:

max
a(t)

(
2x(t)′HÛa(t) + NC2

x(t)′Hx(t) + a(t)′Û′HÛa(t) + NC2

)
subject to µÛ

′a(t) = ρ(t). (5)

Therefore, the overall problem is reformulated to find the highest
SSIM index in Eq. (3) by searching over range of ρ(t). Furthermore,
Eq. (5) is converted into a quasi-convex optimization problem as

min : τ

subject to

max :
(

2x(t)′HÛa(t)+NC2
x(t)′Hx(t)+a(t)′Û′HÛa(t)+NC2

)
≤ τ

subject to µÛ
′a(t) = ρ(t)

 (6)
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Table 1. Performance comparison (SSIM index) between the previously reported methods and our method.
Test image Reference [7] Reference [8] Reference [15] Reference [9] Reference [10] Reference [11] Our method

Image 1 0.7336 0.7282 0.7583 0.6311 0.6146 0.7249 0.7871
Image 2 0.7369 0.7446 0.7439 0.6657 0.6832 0.7305 0.7476
Image 3 0.6617 0.6695 0.6983 0.5822 0.5796 0.6735 0.7378
Image 4 0.7159 0.7066 0.7293 0.7158 0.7100 0.7529 0.7843
Image 5 0.7059 0.6954 0.7155 0.6050 0.6388 0.7287 0.7436
Image 6 0.6962 0.6827 0.7086 0.6269 0.6484 0.7363 0.7440
Average 0.7084 0.7045 0.7257 0.6378 0.6458 0.7245 0.7574

since minimization ofτ is the same as finding the least upper bound
of Eq. (5). Furthermore, Eq. (6) is rewritten as

min : τ
subject to[
min :

[
τ
(
x(t)′Hx(t) + a(t)′K1a(t) + NC2

)
−

(
x(t)′K2a(t) + NC2

)]
≥ 0

subject to µÛ
′a(t) = ρ(t)

]
since the denominator in Eq. (5) is strictly positive, allowing us to
multiply through and rearrange terms. Note that

K1 = Û′HÛ,

and

K2 = 2HÛ.

Then, in the proposed method, τ becomes a true upper bound if[
maxa(t) τ

(
x(t)′Hx(t) + a(t)′K1a(t) + NC2

)
−

(
x(t)′K2a(t) + NC2

)
≥ 0

subject to µÛ
′a(t) = ρ(t)

]
has a non-negative value. The proposed method adopts the Lagrange
multiplier approach shown as follows:

L = τ
(
x(t)′Hx(t) + a(t)′K1a(t) + NC2

)
−

(
x(t)′K2a(t) + NC2

)
+λ

(
µÛ
′a(t) − ρ(t)

)
.

Then, by solving the above problem, we can obtain the optimal vec-
tor â(t) which provides the approximation vector x̂(t) in Eq. (2). Note
that τ can be obtained by using the standard bisection procedures.
From the result x̂ obtained through the POCS algorithm, the pro-
posed method outputs the estimated intensities in the missing areas
Ω.

As shown in the above procedures, we can restore the missing
areasΩwithin the target patch f . The proposed method clips patches
including missing areas and performs their restoration to estimate all
missing intensities. Specifically, we search patches including miss-
ing pixels based on the patch priority in [7], and their missing areas
are restored. Then the restoration of the target image can be com-
pleted.

4. EXPERIMENTAL RESULTS

In this section, we show experimental results for verifying the per-
formance of the proposed method. In this experiment, we prepared
six kinds of test images shown in Fig. 1 and added missing regions to
these images. We assumed that positions of the missing pixels were
known in this experiment. For the corrupted images, we performed
the restoration of the missing areas by using the proposed method
and the previously reported methods [7, 8, 15, 9, 10, 11]. The method

in [7] is a representative exemplar-based method using the selection
of the best patches which enable MSE-based optimal approximation.
The improved versions of [7] have been proposed in [8, 15], where
the method in [15] tries to perform the improvement by using the
sparse representation which is also based on MSE. Therefore, in this
experiment, we adopted these methods [7, 8, 15] and regarded the
methods in [8, 15] as state-of-the-art methods. Furthermore, since
the methods in [9] and [10, 11] respectively utilize the subspaces ob-
tained by PCA and kernel PCA for restoring missing areas, i.e., the
subspaces realizing the least-square approximation in the input space
and the high-dimensional feature space, they were adopted in this ex-
periment. In addition, since we can regard the method in [11] as the
state-of-the-art approach, it is suitable for the comparison of our per-
ceptually optimized method. In this experiment, since the patch size
was fixed to 19, the number of training patches fi becomes smaller.
Since this comparison scheme was adopted in several papers, we
also used such difficult conditions in order to make the difference in
the performance of the proposed method and the previously reported
methods clearer.

The results restored by the previously reported methods and
the proposed method are respectively shown in the third and forth
columns of Fig. 1. In this figure, we only show the result of one
previously reported method for each test image due to the limitation
of pages. From the obtained results shown in Fig. 1, it can be seen
that the proposed method achieves more accurate missing intensity
restoration than those of the previously reported methods. Finally,
we show results of quantitative evaluation obtained from the previ-
ously reported methods and the proposed method. Table 1 shows the
results of the SSIM index calculated between the original images
and the restored images obtained by those methods. Note that the
values shown in this table were calculated from only the restored
areas. From this table, we can confirm that the proposed method
achieves the improvement since our method is optimized with this
criterion. Therefore, the perceptually optimized method is suitable
for the missing intensity restoration.

5. CONCLUSIONS

In this paper, a missing intensity restoration method via perceptually
optimized subspace projection based on ECA has been presented.
Our method performs the calculation of the subspace optimized in
terms of the SSIM index based on ECA which can represent cluster
structures of the target data. Then the POCS algorithm, whose con-
straints are the obtained subspace and the known intensities within
the target image, is adopted to estimate the missing intensities. In
this approach, the projection which maximizes the SSIM index is
realized by converting its problem into the quasi-convex problem.
Consequently, impressive improvement of the proposed method over
the previously reported methods can be confirmed.
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Original images Corrupted images Restoration results by Restoration results by
including missing areas previously reported methods the proposed method

Fig. 1. Restoration results obtained by the previously reported methods and the proposed method. Six test images are used, and they
respectively correspond to Images 1–6. Note that the previously reported methods used for restoring Images 1–6 are respectively Ref [7], Ref
[8], Ref [15], Ref [9], Ref [10] and Ref [11]. The sizes of Images 1–6 are 480 × 360 pixels, 640 × 480 pixels, 480 × 360 pixels, 640 × 480
pixels, 640 × 480 pixels and 640 × 480 pixels, respectively. The percentages of missing areas are 8.9%, 5.4%, 10.7%, 5.9%, 7.1% and 6.2%
in Images 1–6, respectively.
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