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ABSTRACT

An accurate quality metric, called GEQM, for gray-level edge
maps based on the structural matching of edge pixels is proposed in
this work. We design the positional matching cost, which reflects
the distance between two edge pixels, and the structural matching
cost, which measures the structural shapes of edges as well as the
differences of edge strength levels. Based on the cost functions, we
perform the graph-cut optimization to obtain the optimal pixel-based
matching between source and target edge maps bidirectionally. Fi-
nally, we compute the GEQM score by summing up the optimal
matching costs of all edge pixels. Experimental results show that the
proposed GEQM performs the edge map quality assessment more
accurately and more reliably than conventional metrics. Especially,
GEQM is suitable for assessing the qualities of synthesized interme-
diate views in multi-view image processing.

Index Terms— Image quality assessment, edge map quality as-
sessment, gray-level edge map, structural matching, and multi-view
image processing.

1. INTRODUCTION

The peak signal-to-noise ratio (PSNR) is one of the most widely em-
ployed image quality measures, which is based on the mean squared
error of pixel values between two images. PSNR, however, does not
reflect the characteristics of human visual system (HVS) faithfully.
Several alternative measures have been proposed based on HVS.
Wang et al. [1] proposed the structural similarity (SSIM), which
combines the luminance, contrast, and structure terms. Sheikh and
Bovik [2] presented the visual information fidelity, which quantifies
the similarity between an original image and its distorted version
using the mutual information. Recently, Liu et al. [3] proposed an
image quality measure based on the gradient similarity (GSM).

Edges in an image represent object boundary information, and
their distortions are more noticeable to HVS than the distortions in
smooth regions. This means that the subjective quality of an im-
age can be assessed by investigating the distortions in its edge map.
More specifically, given an image and its distorted version, we can
extract the respective edge maps. Then, we can compute the sim-
ilarity between the two edge maps to assess the quality of the dis-
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torted image. However, it is not trivial to measure the similarity
between the edge maps, since the distorted edge map may generate
false edges and remove or displace true edges.

The general image quality measures in [1–3] are inappropriate
for assessing edge map qualities. Several edge map quality metrics
have been specially designed based on pixel matching. Pratt [4] pro-
posed the figure of merit (FOM), which matches detected edges to
ground-truth edges based on the closest distance criterion. Bowyer et
al. [5] also proposed the closest distance metric (CDM) for edge map
quality assessment. While FOM performs many-to-one matching of
pixels and is applicable to binary edge maps only, CDM enforces
one-to-one matching and can assess the qualities of gray-level edge
maps as well. Prieto and Allen [6] formulated the pixel correspon-
dence metric (PCM), which matches gray-level edges based on the
positional difference and the edge intensity difference criteria. These
quality metrics, however, do not consider the structural similarity be-
tween edge maps and may yield incorrect assessment results. Jang
and Kim [7] proposed the structural edge quality metric (SEQM) by
taking into account the structural similarity, but it can be applied to
binary edge maps only.

In this work, we propose a novel quality metric for gray-level
edge maps, called gray-level edge quality metric (GEQM), which
matches the structures of edge pixels between source and target edge
maps. We design the positional matching cost that reflects the dis-
tance between two corresponding edge pixels. We also design the
structural matching cost that measures the structural shapes of edges
and the differences of edge strength levels. Then, we find the optimal
matching for each edge pixel using the graph-cut optimization [8].
Finally, we compute the GEQM score by summing up the match-
ing costs for all edge pixels bidirectionally. Experimental results
show that the proposed GEQM assesses the qualities of gray-level
edge maps more accurately and more reliably than the conventional
metrics [1, 3, 5, 6]. Furthermore, it is demonstrated that GEQM is
suitable for assessing the qualities of synthesized intermediate views
in multi-view image processing.

The rest of this paper is organized as follows. Section 2 de-
scribes the proposed GEQM, Section 3 presents experimental re-
sults, and Section 4 concludes this work.

2. GRAY-LEVEL EDGE QUALITY METRIC

We regard a pixel, which has a gradient magnitude larger than a
threshold, as an edge pixel. Let S = {s1, s2, ..., sM} and T =
{t1, t2, ..., tN} denote the sets of edge pixels in a source edge map
Is and a target edge map It, respectively, where M and N are the
numbers of edge pixels. We find the matching from S to T . For
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Fig. 1. Structural similarity and SAD: (a) source block Bs, (b) tar-
get block Bt1 , (c) target block Bt2 , (d) pixel indices, (e) difference
block |Bs−Bt1 |, and (f) difference block |Bs−Bt2 |. The numbers
denote gray-levels or their absolute differences.

each edge pixel s ∈ S in the source map, we search the candidate
edge pixels t’s in the target map, which are within the 5× 5 window
centered at the position of s. In general, different edge maps have
different numbers of edge pixels. Therefore, the proposed GEQM
allows many-to-one matching of edge pixels.

2.1. Matching Cost Design

First, we use the positional matching cost Cpos(s, t) to measure the
Euclidean distance between s and t.

Cpos(s, t) =
1

R

√
(x(s)− x(t))2 + (y(s)− y(t))2, (1)

where (x(s), y(s)) and (x(t), y(t)) are the xy-coordinates of s and
t, respectively. R is a normalization constant, which adjusts the
weight of the positional term in the total matching cost. We empiri-
cally set R = 10 in this work.

Next, we measure the similarity of edge patterns by comparing
the sum of absolute differences (SAD) between the two 3×3 blocks,
which are centered at s and t, respectively. However, SAD may not
reflect the structural similarity between the two blocks correctly. For
example, Fig. 1(a) is a source block Bs at s, and Figs. 1(b) and (c)
are two candidate target blocks Bt1 and Bt2 at t1 and t2. Fig. 1(d)
shows pixel indices within a block. Figs. 1(e) and (f) depict the abso-
lute differences from Bs to Bt1 and Bt2 , respectively. In Fig. 1(e),
p3 and p6 are associated with relatively large differences of 210 and
120. On the other hand, in Fig. 1(f), both p1 and p6 have a differ-
ence of 120. Thus, the SAD values in Figs. 1(e) and (f) are 330 and
240, respectively. Therefore, if only the SAD feature is employed,
Bt2 is declared to be more similar to Bs than Bt1 is. But Bt1 is
structurally more similar to Bs than Bt2 is. This is because p3 and
p6 are spatially closer to each other than p1 and p6 are.

Based on the above observations, before computing the struc-
tural matching cost, we locally match pixels in a source block Bs to
those in a target block Bt. We form a bipartite graph between nine
pixels in Bs and those in Bt, where link (m,n) connects pm in Bs

and pn in Bt. We assign weight ws,t(m,n) to link (m,n) by

ws,t(m,n) =

H(m,n)×
(

1− |Bs(m)−Bt(n)|+|Bs(n)−Bt(m)|
2 · 255

)
(2)

where B(k) denotes the edge strength level at pixel position pk in
block B. H(m,n) is a monotonically decreasing function of the l1-
distance between pixel positions pm and pn. We set the values of
H(m,n) as 1, 0.8, and 0.5, when the associated l1-distances are 0,
1, and 2, respectively, and set H(m,n) = 0 otherwise. Note that
0 ≤ ws,t(m,n) ≤ 1. Also, ws,t(m,n) becomes larger, when pm

and pn are spatially closer to each other and they have more similar
edge strength levels. In other words, a large ws,t(m,n) indicates
that pm in Bs and pn in Bt are good matching candidates.

Then, we find the optimal set M of the nine pairs (m,n)’s,
which represents the one-to-one matching with the largest sum of
the weights ws,t(m,n)’s. The Hungarian method [9] can be used
to obtain the optimal solution exactly. However, we adopt a greedy
approach to solve this combinatorial problem sub-optimally in an
efficient way. We first select the matching pair (u, v) with the maxi-
mum weight and include it inM. We then set all weights, associated
with pu in the source block and pv in the target block, to be 0. Then,
we select the matching pair of the next maximum weight, include it
inM, and set the associated weights to 0. We repeat this procedure,
until we select all nine pairs. Moreover, we enforce that the center
pixel p5 of the source block is matched to that of the target block, by
setting all weights of ws,t(5, n)’s and ws,t(m, 5)’s to 0 except for
ws,t(5, 5).

Now we define the structural matching cost Cstr(s, t) between
s and t as

Cstr(s, t) =
exp(w̄(s, t)/σ2)− exp(1/σ2)

1− exp(1/σ2)
, (3)

where w̄(s, t) is the average weight of the nine pairs in the optimal
setM and σ2 = 0.2. As w̄(s, t) decreases from 1 to 0, the struc-
tural matching costCstr(s, t) increases from 0 to 1. The exponential
operator in (3) is used to make the structural matching cost sensitive
to variations of w̄(s, t) near value 1.

Finally, we combine the positional cost Cpos(s, t) and the struc-
tural cost Cstr(s, t) to compute the total matching cost

Ctotal(s, t) = 1− (1− Cpos(s, t))× (1− Cstr(s, t)). (4)

It is worth to note that we do not take the simple multiplication of
Cpos(s, t) and Cstr(s, t) as a total cost. In such a case, if either
Cpos(s, t) or Cstr(s, t) is 0, the total cost becomes 0 regardless of
the other cost. On the contrary, the proposed cost Ctotal(s, t) in (4)
becomes 0 only if both Cpos(s, t) and Cstr(s, t) are 0 simultane-
ously. Also, note that 0 ≤ Ctotal(s, t) ≤ 1 .

2.2. Global Optimization

Intuitively speaking, for each edge pixel s in the source map, we find
the best matching edge pixel t in the target map by minimizing the
total cost function Ctotal(s, t). However, as done in [7], we adopt
a global optimization scheme to obtain more reliable results. We
define an energy function E(L) by integrating the data term and the
smoothness term together, given by

E(L) =
∑
si∈S

Ctotal(si, si+li)+δ·
∑
si∈S

∑
sj∈Ni

Csmooth(li, lj) (5)
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Table 1. Gray-level edge map quality assessment results of PCM, CDM, GSM, SSIM, PSNR, and the proposed GEQM. GEQM scores are
multiplied by 100. The scores marked with an asterisk denote that the quality assessment results are inconsistent with the noise intensities.

Gaussian noises Speckle noises Salt-and-Pepper noises Gaussian blur JPEG compression
Image Measure 32.5 65.0 97.5 0.002 0.003 0.004 0.01 0.02 0.03 0.5 1.0 2.0 50 30 10

Baboon

PCM 96.51 95.53 94.21 97.88 97.67 97.17 96.64 94.43 91.82 95.92 89.29 88.26 94.55 93.34 91.44
CDM 96.50 95.50 95.08 97.20∗ 96.53∗ 97.03∗ 98.49 96.79 93.24 94.84 88.59 85.71 94.60 92.32 71.46
GSM 99.38 99.03 98.76 99.75 99.66 99.58 97.84∗ 95.71∗ 96.62∗ 99.41 97.24 96.05 98.88 98.57 97.67
SSIM 85.29 75.16 67.34 94.93 92.78 90.79 75.33 57.15 49.16 90.09 43.85 25.85 70.21 60.41 37.49
PSNR 30.11 27.06 25.30 34.93 33.10 31.88 20.47∗ 17.13∗ 20.16∗ 28.65 21.33 19.84 26.12 24.71 22.22
GEQM 88.26 83.80 80.53 93.53 92.10 90.95 94.63 88.91 77.55 87.64 74.33 70.38 83.43 80.98 74.35

Barbara

PCM 92.68 91.94 90.89 95.95 95.06 95.02 96.42 93.65 91.54 96.52 93.23 91.36 94.18 94.01 93.65
CDM 95.47 94.46 93.67 94.38∗ 95.30∗ 95.31∗ 98.26 96.34 89.87 92.11 78.00 76.53 87.28 80.41 58.70
GSM 99.22 98.81 98.47 99.73 99.64 99.56 97.36∗ 94.81∗ 95.62∗ 99.65 98.23 97.03 99.20 98.91 98.03
SSIM 75.93 64.49 57.26 93.00 90.61 88.42 72.95 52.22 47.85 93.94 69.59 54.74 80.63 74.97 57.98
PSNR 29.79 26.70 24.99 34.59 32.83 31.55 19.44∗ 16.23∗ 19.08∗ 30.57 23.36 21.67 28.78 27.09 24.27
GEQM 87.59 82.77 79.43 93.91 92.59 91.48 94.42 88.73 80.08 92.23 83.37 80.04 88.02 85.61 77.65

Lena

PCM 92.64 91.43 90.49 94.70 94.01 93.61 96.46 93.74 91.50 97.40 94.52 92.93 95.41∗ 95.42∗ 94.28∗

CDM 95.14 94.34 93.72 94.90∗ 94.84∗ 95.06∗ 98.06 96.23 89.97 89.67 70.66 68.29 75.55 64.16 49.34
GSM 99.09 98.57 98.19 99.65 99.54 99.44 96.71∗ 94.05∗ 95.09∗ 99.76 98.58 97.57 99.30 99.03 98.01
SSIM 70.01 57.57 50.14 88.49 84.69 81.34 65.92 47.34 44.56 96.33 75.80 62.27 84.36 78.70 59.29
PSNR 29.47 26.28 24.53 34.36 32.50 31.13 19.14∗ 16.19∗ 19.19∗ 33.41 25.20 22.97 30.40 28.60 25.07
GEQM 87.13 81.92 78.32 93.47 92.01 90.74 93.62 88.17 81.52 94.69 87.58 84.62 90.13 87.22 75.74

Peppers

PCM 92.72 92.07 90.69 95.83 95.12 94.81 96.48 93.45 92.18 97.39 94.21 92.62 95.50∗ 95.68∗ 95.08∗

CDM 94.87∗ 93.93∗ 94.48∗ 95.32∗ 94.31∗ 94.74∗ 98.18 96.21 90.45 91.36 74.71 73.20 80.25 72.32 57.36
GSM 99.19 98.69 98.31 99.69 99.60 99.51 97.19∗ 94.41∗ 95.41∗ 99.78 98.49 97.26 99.05∗ 98.15∗ 98.17∗

SSIM 69.87 57.52 50.27 90.28 86.88 84.22 69.62 48.75 46.52 97.30 80.70 66.98 86.47 81.55 64.01
PSNR 34.46 32.58 31.24 19.62∗ 16.11∗ 19.29∗ 30.76 28.99 25.60 29.75 26.55 24.69 30.76 28.99 25.60
GEQM 87.48 82.41 78.75 93.73 92.32 91.18 94.31 88.67 82.20 94.97 87.66 84.36 90.26 87.49 78.17

where Ni denotes the 8-connected neighbor edge pixels of si and
δ = 0.1. li and lj denote the matching vectors at si and sj ,
respectively, and L is the set of all li’s. The smoothness cost
Csmooth(li, lj) is defined as

Csmooth(li, lj) =

{
0, if li = lj ,
1, if li 6= lj .

(6)

We obtain the optimal L∗ by minimizing E(L) using the graph-cut
algorithm [8].

2.3. GEQM Score Computation

We define the directional matching cost C(Is, It) from the source
map Is to the target map It as the sum of the total matching costs
associated with the optimal matching vectors l∗i ’s in L∗.

C(Is, It) =
∑
si∈S

Ctotal(si, si + l∗i ). (7)

Since we allow many-to-one matching, bothC(Is, It) andC(It, Is)
should be considered together for more reliable quality assessment.
We compute the GEQM score between Is and It by

GEQM(Is, It) = 1− C(Is, It) + C(It, Is)

|S|+ |T | , (8)

where |S| and |T | are the numbers of edge pixels in Is and It, re-
spectively. Note that 0 ≤ GEQM(Is, It) ≤ 1. GEQM returns the
highest score 1, when the two edges maps are identical. On the con-
trary, it returns a low score, when the edge maps are dissimilar from
each other.

3. EXPERIMENTAL RESULTS

3.1. Quality Assessment of Gray-Level Edge Maps

We evaluate the performance of the proposed GEQM using four
classical test images “Baboon,” “Barbara,” “Lena,” and “Peppers.”
We first obtain the ground-truth gray-level edge maps by apply-
ing the first-order central difference gradient filter with coefficients

{−1, 0, 1} to the original images. Then, we extract the edge maps
of distorted images and measure their similarities to the ground-
truth edge maps. We test the following distortion models: additive
zero-mean Gaussian noises with variances 32.5, 65.0, and 97.5,
multiplicative speckle noises with variances 0.002, 0.003, and 0.004,
salt-and-pepper noises with occurrence probabilities 0.01, 0.02, and
0.03, Gaussian blur filters of size 5 × 5 with variances 0.5, 1.0, and
2.0, and JPEG compression with quality factors 50, 30, and 10. We
regard pixels, whose gradient magnitudes are larger than 0, as edge
pixels.

We compare the edge map quality assessment results of the pro-
posed GEQM with those of the conventional metrics PCM [6], CDM
[5], GSM [3], SSIM [1], and PSNR. In PCM and CDM, the max-
imum matching distance is set to 2, as in the proposed GEQM.
Table 1 shows the comparison results. In all measures, a higher
score means that the two edge maps are more similar. Therefore,
scores should decrease as noise intensities increase. But we observe
that conventional metrics yield inconsistent results in some cases.
Specifically, PCM assigns higher scores to the JPEG compressed im-
ages with lower quality factors on the “Lena” and “Peppers” images.
Also, CDM fails to provide consistent results with noise intensities,
in the cases of the Gaussian noises on “Peppers” and the speckle
noises on all four images. GSM also fails for the salt-and-pepper
noises on all images and the JPEG compression tests on “Peppers.”
PSNR fails for the speckle noises on “Peppers” and the salt-and-
pepper noises on “Baboon,” “Barbara,” and “Lena.” Notice that only
SSIM and the proposed GEQM yield decreasing quality scores with
increasing noise intensities in all tests.

3.2. Quality Assessment of 3D Intermediate Views

Next, we apply the proposed GEQM to measure the qualities of
intermediate view frames, which are synthesized from multi-view
images using stereo matching techniques. We use four datasets:
“Poster” and “Venus” from the 2001 stereo datasets [10] and
“Cones” and “Teddy” from the 2003 stereo datasets [11]. We
take the 2nd and the 6th views as the left and the right images,
respectively, and synthesize the 4th view as an intermediate view.
Notice that the quality of a synthesized intermediate view depends
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(a) (b) (c)

Fig. 2. Synthesized intermediate views (upper) and the correspond-
ing edge maps (below) on the “Cones” dataset, which are obtained
from (a) the ground-truth depth maps, (b) the depth maps with shift
noises, and (c) the depth maps with swap noises, respectively.

mainly on the estimated depth maps of the left and the right images,
and that noticeable distortions in the intermediate view generally
occur near object boundaries. Thus, the proposed GEQM can assess
the quality of an intermediate view faithfully by investigating its
edge map.

We obtain the ground-truth edge map of the intermediate view
using the ground-truth depth maps of the left and the right images.
Then, we extract distorted edge maps of the intermediate view using
noisy depth maps. We apply two kinds of noises to obtain the dis-
torted depth maps [7]: the shift noise for shifting pixels to the left by
one pixel, and the swap noise for moving pixels to the left or right
by one pixel alternately.

Fig. 2 shows the noise effects on the intermediate view synthe-
sis. We see that swap noises in Fig. 2(c) distorts the synthesized
image more severely than shift noises in Fig. 2(b). Table 2 com-
pares the edge map quality assessment results on synthesized inter-
mediate views. PCM provides higher scores for swap noises than
for shift noises on “Poster” and “Cones,” which is contradictory to
the observation in Fig. 2. CDM also exhibits inconsistent results
on “Poster.” SSIM and PSNR provides inconsistent results on all
datasets. In contrast, the proposed GEQM properly returns higher
scores for shift noises than for swap noises in all tests.

4. CONCLUSIONS

We proposed an efficient gray-level edge quality metric, called
GEQM, which takes the structural similarity and the positional sim-
ilarity of edge maps into account. The proposed GEQM estimates
the matching costs for possible pairs of edge pixels between two
edge maps. Then, it minimizes the pixel-wise matching cost glob-
ally, using the graph-cut optimization technique, and determines
the optimal matching pairs. Then, it employs the resulting optimal
costs to compute the GEQM score. Simulation results demonstrated
that GEQM provides more accurate and reliable quality assessment
than the conventional metrics [1, 3, 5, 6]. Moreover, we verified
that GEQM is a promising technique for assessing the qualities of
synthesized intermediate views in multi-view image processing.
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