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ABSTRACT 

 

This paper introduces the use of three physiologically-

motivated features for speaker identification, Residual Phase 

Cepstrum Coefficients (RPCC), Glottal Flow Cepstrum 

Coefficients (GLFCC) and Teager Phase Cepstrum 

Coefficients (TPCC). These features capture speaker-

discriminative characteristics from different aspects of 

glottal source excitation patterns. The proposed 

physiologically-driven features give better results with lower 

model complexities, and also provide complementary 

information that can improve overall system performance 

even for larger amounts of data. Results on speaker 

identification using the YOHO corpus demonstrate that 

these physiologically-driven features are both more accurate 

than and complementary to traditional mel-frequency 

cepstral coefficients (MFCC). In particular, the 

incorporation of the proposed glottal source features offers 

significant overall improvement to the robustness and 

accuracy of speaker identification tasks. 

 

Index Terms— Speaker distinctive feature, Speaker 

identification, Glottal source excitation and GMM-UBM 

 

1.  INTRODUCTION 

 

The task of speaker identification and verification has 

received a great deal of attention from the research 

community in the past decade, with substantial gains in 

accuracy as well as channel and background robustness [1, 

2]. However, the features for identification and verification, 

such as cepstral coefficients, are still primarily 

representations of the overall spectral characteristics, and 

thus the models are primarily phonetic in nature, with 

systems differentiating speakers through characterization of 

pronunciation patterns. Little progress has been made 

toward identifying individually unique speech characteristics 

that are independent of phonetic content. This causes several 

significant limitations, including the need for models that 

represent a speaker’s entire phonetic space and higher model 

complexity to cover this space.   

Although MFCCs have been widely applied to speech 

and speaker recognition, MFCC features also have 

limitations [3]. One of the goals of using MFCCs for speech 

recognition is to eliminate speaker-specific information for 

different speakers [4, 5], capturing the common 

representative acoustic information. In contrast, the goal for 

speaker recognition is to extract speaker-specific 

information while minimizing the impact of unrelated 

phonetic information. Since pronunciation patterns are 

unique, MFCCs are still effective features for speaker 

recognition, but this is also somewhat contradictory 

considering the opposite nature of these two tasks. The use 

of the same representation for both speech and speaker 

recognition is ironic, and indicates an opportunity for  

generating better performance by characterizing and 

incorporating features that are less connected to phonetic 

information.  
The glottal source waveform contains much information 

about the unique physiological properties of an individual’s 

speech production mechanism [6]. There has been some 

recent work in this direction [7-9], and this paper focuses on 

further development of effective vocal source features for 

speaker identification. The glottal source signal represents 

the musculature and tension of the vocal folds, and the 

associated glottal pulse parameters, including the rate of the 

closing phase and the degree of the glottal opening. The 

vibratory pattern of the vocal folds not only produces a 

voicing source for speech production, but also characterizes 

unique nonlinear flow patterns for each speaker [10]. The 

quasi-periodic motion of relevant vocal organs generates a 

pulse-like epoch shape that varies among speakers. These 

characteristics are unique to a given speaker’s speech 

production system. Hence, features derived from the vocal 

source have capacity to provide valuable information for 

speaker recognition. 

Feature extraction methods for capturing the vocal tract 

characteristics of speaker, such as MFCCs, linear predictive 

cepstral coefficients (LPCCs) [11], line spectral frequencies 

(LSFs) [11] and log area ratios (LARs) [12],  have been 

investigated for many years. These features can accurately 

characterize the vocal tract configuration of a speaker, and 
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can achieve good performance in current speaker 

recognition systems. However, the usefulness of vocal 

source excitation related features is still under-investigated. 

Inspired by the physiological significance of the vocal 

source characteristics residing in speech production system, 

this paper investigates several speaker specific source 

features using novel signal processing approaches. 

This paper is organized as follows. Section 2 provides 

the details of the proposed feature extraction methods. The 

baseline GMM-UBM speaker identification system is 

described in Section 3. Section 4 describes the experimental 

data, setup and results, with final conclusions in Section 5.  

 

2.  VOCAL SOURCE FEATURE EXTRACTION 

 

2.1. Residual phase cepstrum coefficients 

 

The Linear Predictive Coding (LPC) residual of a speaker 

represents the impulse-like excitation which is related to the 

region around the glottal closure instant within each pitch 

period. These regions are known to contain speaker-specific 

information [8, 13].  Listening experiments have also shown 

that residual provides valuable information that allows 

humans to distinguish between speakers [14]. Vocal tract 

excitation differs among speakers and stays stable within a 

given speaker. This leads to the possibility that features 

extracted from the residual signal may be useful in speaker 

recognition. Most features related to the residual are based 

on the magnitude spectrum of the LP residual signal, with 

the phase spectrum discarded. The large fluctuation of the 

residual causes difficulty deriving useful features. Gautherot 

reported that the magnitude spectrum of the LPC residual is 

flat, suggesting that substantial information retained in the 

phase [14].  

The Residual Phase (RP) is defined as the cosine of the 

phase function of the analytic signal [15, 16]. The analysis is 

based on the residual of a speech signal, which is defined as 

the error between the actual value ( )s n and the LPC 

predicted value ˆ( )s n .  Rather than using the residual directly 

or the residual magnitude spectrum, the analytic signal is 

calculated via a Hilbert transform and the phase component 

is then extracted as cosine of the analytic signal ( )ar n [16]: 
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Fig. 1. Residual Phase Cepstrum Coefficients (RPCC) 

In contrast to [16], where the residual phase is directly 

implemented as a complementary feature to MFCCs for 

speaker recognition, the method proposed here performs 

mel-spaced cepstral analysis on the spectrum of the residual 

phase signal, followed by log and DCT operations, as shown 

in Fig. 1. The resulting Residual Phase Cepstral Coefficients 

(RPCC) compactly represent the phase information of the 

underlying excitation waveform. 
 

2.2. Glottal flow cepstrum coefficients 

 

The glottal flow is the airflow arising from the trachea and 

passing through the vocal folds. There is significant 

supporting evidence demonstrating that the glottal flow is 

speaker specific [17]. Videos of vocal fold vibration [18] 

show large variations in the movement of the vocal folds 

from one speaker to another. For some individuals the vocal 

folds never close completely and in other cases vocal folds 

close completely and rapidly. The duration of vocal fold 

opening and closing, the glottal closing instants (GCIs) and 

opening instants (GOIs), and the shape of the glottal flow 

vary significantly across speakers. These variations 

correspond to the variations in the glottis, and then are 

reflected in the glottal flow. Therefore, the glottal flow 

contains speaker distinctive information and features derived 

from glottal flow are expected to be useful for speaker 

identification. 

The accurate estimation of glottal flow has been a target 

of speech research for several decades. Many different 

methods have been developed. Among these methods, Pitch 

Synchronous Iterative Adaptive Inverse Filtering (PSIAIF) 

[19] is popular and has been proven to be an efficient 

method for estimation of the glottal flow. The PSIAIF is 

used to estimate the glottal waveform of speech signal by 

filtering the original speech signal using an inverse model of 

the vocal tract filter, modeled as an all-pole system. In this 

work the magnitude spectrum of the PSIAIF-estimated flow 

waveform is used to represent the glottal flow 

characteristics. The FFT magnitude spectrum is warped to 

the Mel frequency scale followed by log and DCT operators 

to obtain Glottal Flow Cepstral Coefficients (GLFCC). An 

overview of this process is shown in Fig. 2. The GLFCC 

features thus represent the spectral magnitude characteristics 

of a speaker’s glottal excitation pattern.  
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Fig. 2. Glottal Flow Cepstrum Coefficients (GLFCC) 

 

2.3. Teager phase cepstrum coefficients 

 

Most speech processing models are based on the traditional 

linear source-filter speech production model, assuming that 

the airflow propagates in the vocal tract as a plane wave. It 

is well understood that the true airflow propagation is much 

more complex [17]. Research by Teager [20] models the air 

flow through a series of separate and simultaneous vortices 
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distributed throughout the vocal tract. The resulting 

instantaneous Teager-Kaiser energy operator (TEO) 

provides an advantage over Fourier analysis methods in 

capturing the characteristics of nonlinear systems [21], 

measuring the underlying energy required for production  

rather than the energy of the resulting waveform. The TEO 

is applicable for analysis and estimation of the nonlinear 

characteristics of the existing amplitude and frequency 

modulation patterns in a vocal excitation signal. Based on 

this approach, we have used the TEO to characterize the 

vibration characteristics yielded by the vocal folds for 

potential speaker-specific feature extraction. Features 

derived from the TEO are used to reflect properties of the 

speech production process that are not covered by features 

derived from the linear model of speech production. 

The TEO operator in the discrete-time form is 

 2[ ( )] ( ) ( 1) ( 1)x n x n x n x n      (2) 

where ( )x n  is the sampled speech signal and [ ]   is the 

TEO operator. This TEO is typically applied to a band-pass 

filtered speech signal since its purpose is to reflect the 

energy of this nonlinear flow within the vocal tract for a 

single resonant frequency. The corresponding TEO profile 

can be used to decompose a speech signal into its amplitude 

modulation (AM) and frequency modulation (FM) 

components within a certain frequency band [17]: 
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where ( ) ( ) ( 1)y n x n x n    is the time domain difference 

signal, ( )f n is the FM component at sample n, and ( )a n  is 

the AM component at sample n .  

For the task of speaker recognition being investigated 

here, we have again used the phase of the signal rather than 

the magnitude spectrum to represent speaker-specific 

characteristics, following the computational structure used 

for the RPCC.  
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Fig. 3. Teager Phase Cepstrum Coefficients (TPCC) 

 

Fig. 3 shows a block diagram of the proposed Teager 

Phase Cepstrum Coefficients (TPCC). The excitation energy 

contour is initially calculated through the Teager energy 

operator. Then the fine energy structure is obtained by a 

Hilbert transformation, and the cepstrum of the fine energy 

structure is computed and warped to the Mel frequency scale 

followed by a log and DCT operation, to obtain TPCC. The 

TPCC features computed in this way represent the phase 

characteristics of the Teager nonlinear energy model of the 

speech production process. 

 

3.  METHODS 

 

The baseline classification framework in this paper is based 

on a Gaussian Mixture Model and Universal Background 

Model (GMM-UBM) approach [22], commonly used in the 

speech processing community to perform speaker 

recognition. This approach has advantages in its flexibility 

and robustness to duration and temporal alignment 

differences between training and testing examples. The 

UBM is a speaker-independent GMM trained with speech 

samples from a large set of speakers to represent general 

speech characteristics. The hypothesized speaker model is 

derived from the UBM using Maximum A Posteriori (MAP) 

adaptation with the corresponding speech samples from a 

particular enrolled speaker. The strategy of adapting the 

target speaker model is based on the similarity between the 

enrollment data of target speaker and UBM, adjusting the 

UBM to the speaker training data.  

 

4.  EXPERIMENTAL RESULTS 

 

4.1. Data corpus 

 

The proposed new features were evaluated on the YOHO 

speaker identification task. The YOHO corpus was collected 

by ITT under a US government contract and was designed 

for speaker recognition systems in office environments with 

limited vocabulary [23]. This database was recorded using a 

telephone handset in a real office environment and sampled 

at an 8 kHz sampling frequency with 16 bits per sample. 

This corpus consists of 138 speakers each with 24 training 

utterances and 40 test utterances recorded in different 

sessions. The vocabulary consists of 56 two-digit numbers, 

ranging from 21 to 97 spoken continuously in sets of three 

(e.g., 32-56-68) in each utterance. In this work, all the 

utterances identified as enrollment data were used to train 

the model, and utterances in the verification data set were 

used for testing. Each enrollment session consists of 24 

phrases and each testing utterance is single example. There 

are about 6 minutes of speech used for training each speaker, 

and 2.4 seconds of speech for testing.  

 

4.2. Experimental setup 

 

As introduced in Section 3, the GMM-UBM speaker 

identification framework is used for evaluation. Initially, a 

universal background model is trained using the training 

utterances from all 138 speakers. Following this each 

speaker’s model is adapted from the corresponding training 

utterance using the MAP adaption approach. The 

identification experiments were conducted on the YOHO 
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database as the number of mixtures is increased. This 

experimental configuration is designed to evaluate if the 

proposed features can rapidly build an accurate model with 

lower model complexity.  

The speech utterances were analyzed using a 32ms 

frame with a 50% frame overlap, and twelve coefficients of 

each feature (MFCC, RPCC, GLFCC and TPCC) are 

derived from each frame. A baseline system using MFCC 

features was evaluated. The first experiment uses individual 

features alone to assess their individual performance 

respectively, and then proposed features are appended to the 

baseline MFCC in order to evaluate their complimentary 

characteristics to the baseline feature.  

Since the motivation behind the proposed features is to 

identify information that corresponds more to physiological 

structure and less to phonetic characteristics and 

pronunciation patterns, the accuracy of the system as a 

function of model complexity, represented by number of 

mixtures, is used to evaluate whether the proposed features 

are able to better model speaker differences in a model space 

with reduced parameters and representative power. 

 

4.3. Accuracy of individual features 

 

The accuracy versus increasing number of mixtures for the 

proposed features is shown in Fig. 4. At low model 

complexities, RPCC and GLFCC features show better 

performance than the baseline MFCC features, although the 

TPCC features do not. Of great interest is that the GLFCC 

features outperform  the traditional MFCC features across 

all model configurations. This is particularly meaningful 

because the GLFCC features are based entirely on the glottal 

flow waveform, with spectral information removed. 
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Fig. 4. SID performance on YOHO with an increasing 

number of Gaussian mixture components 

4.4. Accuracy of combined features 

 

Fig. 5 shows classification accuracy using MFCC features 

combined with the proposed source features against 

increasing model complexity. The primary observation is 

that, as hypothesized, the spectral information of the MFCCs 

and the vocal excitation information of the proposed features 

is clearly complementary, with each combination 

outperforming the baseline by a substantial margin. 

Combining the MFCCs with all proposed features gives 

noticeable additional improvement.  
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Fig. 5. SID performance of combined features with an 

increasing number of Gaussian mixture components 

The performance across all model complexities clearly 

show the robustness of combining the baseline features with 

the proposed vocal source features. At low model 

complexities the improvement is quite large, e.g. 60% 

accuracy for the combined features vs. the 30% baseline 

MFCC at 4 mixtures. Table 1 shows the final system 

performance, with a final performance of 94.3% compared 

to the original 87.3% baseline, cutting error by more than 

half.  

Table 1. Accuracy of the final system with 256 mixtures 

Feature Combinations Accuracy 

MFCC + Proposed features 94.3 

MFCC 87.3 

 

5.  CONCLUSIONS 

 

This paper has introduced three speaker-distinctive features 

for speaker identification based on vocal source 

characteristics, including residual phase, glottal flow, and 

phase of Teager energy. These features represent unique and 

individually distinct aspects of the underlying vocal source 

excitation. The experimental results show that the proposed 

features provide information about speaker characteristics 

that is significantly different in nature from the phonetically-

focused information present in traditional spectral features 

such as MFCCs.  The incorporation of the proposed glottal 

source features offers significant overall improvement to the 

robustness and accuracy of speaker identification tasks. The 

fact that the proposed features have better performance at 

low model complexities suggests that these new features are 

less dependent on the underlying phonetic content of the 

speech and may be useful for a wide variety of speaker 

identification and verification applications.  

1712



6.  REFERENCES 

 

[1] J. P. Campbell, "Speaker recognition: a tutorial," 

Proceedings of the IEEE, vol. 85, pp. 357-366, 1980. 

[2] N. Zheng, T. Lee, and P. C. Ching, "Integration of 

complementary acoustic features for speaker 

recognition," IEEE Signal Proc. Letters, vol. 14, 2006. 

[3] S. Davis and P. Mermelstein, "Comparison of 

parametric representations for monosyllabic word 

recognition in continuously spoken sentences," IEEE 

Transactions on Signal Processing, pp. 357-366, 

1980. 

[4] R. D. Zilca, J. Navratil, and G. N. Ramaswamy, 

"Depitch and the role of fundamental frequency in 

speaker recognition," ICASSP, 2003. 

[5] K. Chen and A. Salman, "Extracting speaker-specific 

information with a regularized Siamese deep network," 

Advances in Neural Information Processing Systems, 

2011. 

[6] G. Fant, "Glottal source and excitation analysis," 

Speech transmission laboratory, Royal Institute of 

Technology, Quarterly Progress and Status Report, 

vol. 20, pp. 85-107, 1979. 

[7] I. Hernaez, I. Saratrxaga, J. Sanchez, E. Navas, and I. 

Luengo, "Use of the harmonic phase in speaker 

recognition," Proc. Interspeech, pp. 2757-2760, 2011. 

[8] L. Wang, S. Ohtsuka, and S. Nakagawa, "High 

improvement of speaker identification and verification 

by combining MFCC and phase information," Proc. 

ICASSP, pp. 4529-4532, 2009. 

[9] T. Drugman and T. Dutoit, "On the potential of glottal 

signatures for speaker recognition," Proc. Interspeech, 

2010. 

[10] B. H. Hildebrand, "Vibratory patterns of the human 

vocal cords during variations in frequency and 

intensity," in Doctoral Diss.: Univ. of Florida, 1976. 

[11] X. Huang and A. Acero, "Spoken Language 

Processing," Prentice Hall, Upper Saddle River, New 

Jersey, 2001. 

[12] L. Rabiner and B. H. Juang, "Fundamentals of Speech 

Recognition," Prentice Hall Press, 1993. 

[13] T. C. Feustel, G. A. Velius, and R. J. Logan, "Human 

and machine performance on speaker identity 

verification," Speech Tech, pp. 169-170, 1989. 

[14] O. Gautherot, "LPC residual phase investigation," in 

Proc. of EuroSpeech, 1989. 

[15] J. Wang, "Physiologically-motivated feature extraction 

methods for speaker recognition," in Doctoral 

Dissertation: Marquette University, 2013. 

[16] K. S. R. Murthy and B. Yegnanarayana, "Combining 

evidence from residual phase and MFCC features for 

speaker recognition," IEEE Signal Process. Lett., vol. 

13, pp. 52-56, 2006. 

[17] T. F. Quatieri, Discrete-Time Speech Signal 

Processing: Principles and Practice: Prentice Hall, 

2002. 

[18] B. T. Labs, "High speed motion pictures of the human 

vocal cords," Bureau of Publication, 1937. 

[19] P. Alku, "Glottal wave analysis with pitch synchronous 

iterative adaptive inverse filtering," Speech 

Communication, pp. 109-118, 1992. 

[20] H. M. Teager, "Some observations on oral air flow 

during phonation," IEEE Trans. Acoust., Speech, 

Signal Processing, vol. 28, pp. 599-601, 1980. 

[21] S. Das and J. H. L. Hansen, "Detection of voice onset 

time (VOT) for unvoiced stops using the Teager 

Energy Operator (TEO) for automatic detection of 

accented English," Proceedings of the 6th Nordic 

Signal Processing Symposium, 2004. 

[22] D. A. Reynolds, T. Quatieri, and R. Dunn, "Speaker 

verification using adapted Gaussian mixture models," 

Digital Signal Processing, vol. 10, pp. 19-41, 2000. 

[23] J. Campbell and H. Alan, YOHO Speaker Verification 

(LDC94S16), 1994. 

 

1713


