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ABSTRACT

In this paper we report on speaker verification experiments using
branched vocal tract model estimates of alveolar nasal (/n/) stops.
While the discriminatory potential of nasal acoustics has long been
established, their acoustic properties have so far mostly been charac-
terized using spectral features. Here, we used a Bayesian estimation
technique to obtain reflection coefficients of a branched-tube model
of the combined nasal and oral tract. Parameters were then modeled
using probabilistic linear discriminant analysis to calculate likeli-
hood ratios for speaker verification trials. Performance was assessed
on normal and high vocal effort speech using high-quality and
mobile-telephone-transmitted recordings taken from the German-
language Pool2010 corpus. Results are compared with those of
systems based on mel-frequency cepstral coefficients (MFCC). Vo-
cal tract parameter based systems outperform MFCC based systems
in matched conditions, but lack robustness under mismatch, while
being readily interpretable with respect to a physical speech produc-
tion model.

Index Terms— Nasals, vocal tract modeling, Bayesian estima-
tion, likelihood ratio, speaker verification

1. INTRODUCTION

The acoustic properties of nasals have long been considered as an
important source of speaker-discriminating information. The com-
plicated structure of the nasal cavity and the asymmetric proportions
of the left and right sinuses and passages of the nasal tract, which is
split in two by the nasal septum, cause substantial acoustic variation
between different speakers [1, 2]. In the production of nasal stops a
closure is formed by the lips (/m/), the tongue at the alveolar ridge
(/n/), or the tongue dorsum at the lowered velum (/N/), while the
velum is lowered, coupling the nasal cavity to the vocal tract. The
relatively fixed structure of the vocal and nasal cavity provides the
basis for the a-priori assumption of low within-speaker variability.
Based on these theoretical aspects nasal stops have also been consid-
ered as potentially useful for performing forensic voice comparison
[3, p. 133]. Early studies in speaker identification [4, 5] as well as
work on the relative contribution of different sound classes and rep-
resentations in automatic speaker recognition [6, 7, 8, 9, 10, 11] pro-
vided empirical evidence in support of these arguments. Recently,
attempts were made to model nasal spectra using pole-zero model
estimates [12, 13]. However, these studies did not explore explicit
modeling of nasal acoustics. Features derived from theoretical mod-
els of the vocal tract acoustics can more readily be interpreted, which
may be beneficial for applications such as forensic voice compari-
son.

The drawback of such models is the more complex relation be-
tween the speech signal and the parameters and thus a more difficult

estimation. To accurately model the spectral components of nasal
speech signals, a minimum of two connected tubes is necessary. This
added complexity as compared to one-tube models requires addi-
tional assumptions in order to constrain the estimation process. The
present paper uses a variational Bayesian scheme to estimate the
tube areas of a combined nasal and oral tract model from the log-
spectrum of the speech signal of nasal stops [14]. Here, probabilistic
priors are used to enforce smoothness of the tube model. Vocal tract
parameters are obtained from the tube model estimates and are used
as features.

Probabilistic linear discriminant analysis (PLDA) [15] is used
to model these features and calculate likelihood ratios in speaker
verification experiments. Evaluations are based on data from the
German-language Pool2010 corpus [16]. The effect of using differ-
ent prior variances in the estimation is evaluated on the basis of a
development set. Performance is compared with a baseline system
using mel-frequency cepstral coefficients (MFCCs) extracted from
the same nasal stop segments. The effect of differences in vocal ef-
fort and mobile-telephone transmission channel are investigated.

2. METHODOLOGY

2.1. Data base

The data were extracted from recordings of 103 male adult German
speakers in the Pool2010 corpus [16]. Each speaker was recorded
reading a text (The North Wind and the Sun) using normal and high
vocal effort. The latter was induced by playing 80 dBSPL white noise
over headphones. In addition, a channel-degraded version of the
high-quality recordings was created by transmitting them over mo-
bile telephone. An automatic phone-level alignment [17] was per-
formed on the recordings, followed by auditory validation of /n/ la-
bels. The /n/ tokens in each recording were then split in equal-sized
training (enrollment) and test portions. Each portion contained be-
tween 23 and 34 (median 31.5) tokens. Data of 20 speakers were
used as background population for training the PLDA model param-
eters (see Section 2.6). Data of another 20 speakers were used as
development set and data of the remaining 63 speakers as evaluation
set, resulting in 63 target and 3906 non-target trials.

2.2. Vocal tract model

The details of the model have been described previously [18]. In
short, the model consists of three segmented tubes connected at the
velum: a pharyngeal tube (L segments), an open nasal tube (M seg-
ments), and the oral tube (N segments) which is closed at the lips.
The model is parameterized in terms of a set of vocal tract reflection
coefficients µ and the nasal-oral coupling parameter σ. From this
a rational transfer function H(µ, σ, ω) = B(µ, σ, ω)A(µ, σ, ω)−1
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can be derived [18]. Unlike in the case of the single tube model
[19], going from the M + L + 2N polynomial coefficients to the
M + L + N + 1 vocal tract parameters is in general not possible.
Hence, estimation of the area function of such a model is not straight
forward.

The method used to derive the model parameters is based on the
estimation scheme introduced in [14]. Contrary to previous methods
[18, 20] the model estimation does not rely on a separate pole-zero
estimation but estimates the model from the (pre-emphasized) log-
envelope y directly:

yj = log H̄ (θ,ωj) + εj . (1)

For the j-th frequency ωj the function H̄ evaluates the non-
linear transformation from a set of vocal tract parameters θ to the
transfer function. As the reflection coefficients µ are restricted to
the open interval (−1, 1) and σ is restricted to (0, 1), a sigmoidal
mapping from the i-th parameter θi to the i-th restricted parameter
is also included in H̄ to allow for unconstrained optimization. These
unrestricted parameters θ form the VT features (VT-θ) used in the
experiments. Further, a scaling factor for the transfer function is
estimated which, however, is not included in the verification task.
Therefore, the dimension of the parameter vector VT-θ is M +N +
L+ 1.

2.3. Estimation scheme

The Bayesian model for the estimation scheme is given as

p (θ, τ,Π|y) ∝ p (y|θ, τ) p (τ) p (θ|Π) p (Π) , (2)

where θ is the vector of VT-model parameters, τ is the preci-
sion (i.e., the inverse variance) of the normally distributed likeli-
hood p (y|θ, τ) = N

(
y; log H̄ (θ,ω), τI

)
, and Π is the preci-

sion matrix of the smoothness prior for the vocal tract parameters
(p (θ|Π) = N (θ; 0,Π)). Compared to the original scheme [14]
there have been two alterations. Instead of the prior of the logarithm
of τ assumed to be normal the prior of τ is now the gamma distribu-
tion (p(τ) = Gam(τ ; aτ , bτ )) which is the conjugate prior for the
precision under the assumption of an independently and identically
distributed Gaussian error. Second, previous results have shown that
the choice of prior has a profound effect on the resulting parameters
(e.g., [14, 21]). Thus, to avoid having to choose a fixed a-priori
variance for θ, a hyperprior p(Π) is introduced:

p(Π) =
∏
i

Gam(Πi; ai,bi). (3)

Here, the product of gamma distributions results in a diagonal
prior precision matrix Π. For a correlated prior a Wishart distribu-
tion could be used, however, here only the uncorrelated variant is
used for simplicity and ai and bi are the same for all parameters θi
except the scaling which has a low precision prior. The variational
estimation scheme will be described briefly. Two assumptions about
the posterior density q(θ, τ,Π) are necessary. First, q(θ, τ,Π) fac-
tors as q(θ)q(τ)q(Π). Second, as in the original scheme, q(θ) is
assumed to be normal. Then, the posterior distributions for one set
of parameters is calculated as the expected value of the log of the
joint distribution p(θ, τ,Π) under the remaining two posterior dis-
tributions. The three resulting integrals are repeatedly calculated un-
til the estimation converges. The integrals evaluating the function
H̄ are approximated using the unscented transform [22]. A Gauss-
Newton scheme is used to find the mode of q(θ).

For the estimation, 30 ms long central portions of the tokens
(fs=8000 Hz) were used with a pre-emphasis of 0.9 (see also [21]).
L, M , and N were chosen as 4, 6, and 4, respectively. Fundamental
frequencies for the envelope extraction were estimated using [23].

2.4. Vocal tract priors

Six different settings for the ai (10, 20, 50, 100, 100, 200) and bi
(1, 1, 1, 2, 1, 2) were evaluated. The expected value for precision
is given as a/b and thus the values are 10, 20, 50, 50, 100, 100.
Settings 3 and 4 as well as 5 and 6 have the same expectation re-
spectively, however, the distribution is narrower for case 4 and 6.
This range of values was chosen, as in [14] a value of 10 for the pre-
cision was found a good value for low within-subject variance and
reasonable estimation error. As shown, higher values for the preci-
sion lead to less intra-subject variance which may be desirable for
speaker verification. For each condition the optimal prior settings
were empirically determined via tests using the development set.

2.5. Baseline features

Mel-frequency cepstral coefficients were extracted from the same
30 ms long portion of the tokens used for VT estimation. A Han-
ning window was applied to the non-preemphasized samples. The
power spectrum was then multiplied by a filter bank consisting of 26
triangular-shaped filters with a 50% overlap. In the mel-frequency
scale all filters had the same width and overlap. A discrete cosine
transform (DCT) was fitted to the logarithm of the 26 filter outputs,
and first 13 DCT coefficient values (MFCC values) were used as
baseline features.

2.6. PLDA modeling

Vocal tract parameters (VT-θ) as well as MFCCs were directly mod-
eled using probabilistic linear discriminant analysis (PLDA) [15]. In
this approach, which is commonly used for modeling i-vector rep-
resentations of recordings in automatic speaker recognition systems,
the feature vectors are assumed to be generated by the generative
model [15, 24, 25] (notation follows [15]):

xij = µ+ Fhi + Gwij + εij . (4)

xij denotes the jth observation (VT-θs or MFCCs) of speaker i,
µ+ Fhi describes the between-speaker variability, and Gwij + εij
the within-speaker variability. As in [15] we use a Gaussian residual
term εij with diagonal covariance Σ. The priors of the latent vari-
ables hi and wij are assumed to be Gaussian. The model parame-
ters µ, F, G, and Σ are trained using an Expectation-Maximization
(EM) algorithm [15]. The optimal subspace dimensionsNF andNG
were empirically determined via tests using the development set1.

2.7. Likelihood ratio calculation

Given mean vectors x̄1 and x̄2 obtained from observations of /n/ to-
kens in the training (enrollment) and test portions of a verification
trial, a score s is calculated as a likelihood ratio with respect to two
hypotheses, that both vectors share the same latent identity variable
(H1), or that they were generated from different latent identity vari-
ables (H2):

s =
p(x̄1, x̄2|H1)

p(x̄1|H2)p(x̄2|H2)
. (5)

1An initial approach using GMM-UBM [26] was discarded based on in-
ferior performance on tests using the development set.
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Scores obtained from tests on the development set were used to
calculate weights for logistic-regression calibration [27, 28] which
was applied to calibrate the scores from the evaluation set. Logistic
regression was also used to fuse the scores from VT-θ and MFCC
based systems [29].

3. RESULTS

We assessed system performance using Equal Error Rates (EER) and
the log likelihood ratio cost (Cllr) metric, as well as Detection error
trade-off (DET) plots as graphical representations. EER and DET
plot statistics were obtained using the Receiver Operator Character-
istic Convex Hull method2.

3.1. Vocal tract prior settings

We first investigated the performance of the six different prior set-
tings via tests using normal vocal effort speech and high-quality
recordings of the development set. The results in Table 1 suggest
that higher values for the precision lead to better speaker verification
performance on the development set.

1 2 3 4 5 6
EER 2.90 3.26 3.62 4.00 2.78 1.52
Cllr 0.180 0.185 0.179 0.181 0.108 0.082

Table 1. EER and Cllr of tests of VT-θ based systems using differ-
ent VT prior settings (see Section 2.4).

3.2. Normal vocal effort, high-quality recordings

Figure 1 shows the results of tests on normal vocal effort speech
from high-quality recordings. The VT-θ based system shows bet-
ter performance than the MFCC based system, except for operat-
ing points in the low false alarm probability region (due to skewed,
non-Gaussian score distributions). Fusion of both systems increases
performance over both individual systems.

3.3. High vocal effort, high-quality recordings

Figure 2 and Table 2 show the results for tests on high vocal effort
speech using high-quality recordings. Solid lines indicate perfor-
mance on tests with matched conditions, i.e., both comparison sam-
ples have high vocal effort. Dashed lines show performance on tests
with mismatched conditions, i.e., one sample has high vocal effort,
the other normal vocal effort. In tests on matched conditions the
VT-θ based system shows better performance than the MFCC based
system. Under mismatch the general system performance decreases
substantially, in particular that of the VT-θ based system.

high vocal effort Matched Mismatched
EER Cllr EER Cllr

VT-θ (NF = NG = 10) 3.30 0.317 15.00 0.574
MFCC (NF = NG = 10) 4.20 0.201 11.30 0.405
Fusion 1.50 0.133 9.80 0.333

Table 2. EER and Cllr of VT-θ and MFCC based systems (high v
normal vocal effort, high-quality recordings)

2http://focaltoolkit.googlepages.com/rocch
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Fig. 1. DET plot comparing the performance of alveolar nasal stop
(/n/) VT-θ and MFCC based systems (normal vocal effort, high-
quality recordings).
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Fig. 2. DET plot comparing the performance of alveolar nasal stop
(/n/) VT-θ and MFCC based systems (high v normal vocal effort,
high-quality recordings).

3.4. Normal vocal effort, mobile-telephone channel

Figure 3 and Table 3 show the results for tests on mobile-telephone
channel using normal vocal effort speech. Solid lines indicate per-
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formance on tests with matched conditions, i.e., both comparison
samples are from mobile-telephone recordings. Dashed lines show
performance on tests with mismatched conditions, i.e., one sample
is from a mobile-telephone recordings, the other from a high-quality
recording. As with vocal effort, the VT-θ based system shows better
performance than the MFCC based system in matched conditions,
but worse performance in mismatched conditions.
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Fig. 3. DET plot comparing the performance of alveolar nasal stop
(/n/) VT-θ and MFCC based systems (normal vocal effort, mobile-
telephone v high-quality).

mobile-telephone Matched Mismatched
EER Cllr EER Cllr

VT-θ (NF = NG = 11) 2.70 0.155 18.30 1.265
MFCC (NF = NG = 8) 6.10 0.229 8.80 0.401
Fusion 1.90 0.102 8.40 0.686

Table 3. EER and Cllr of VT-θ and MFCC based systems (normal
vocal effort, mobile-telephone v high-quality)

4. DISCUSSION AND CONCLUSION

The present paper assesses the performance of physiologically mo-
tivated vocal tract model estimates of alveolar nasal stop (/n/) to-
kens in speaker verification experiments. Parameters of a branched-
tube model of the combined nasal and oral tract are obtained using a
Bayesian estimation technique. These are then modeled using prob-
abilistic linear discriminant analysis.

As noted in Section 2.4, higher values for the precision in the
Bayesian vocal tract estimation generally lead to less intra-subject
variance. Correspondingly, we observed that performance on the
development set increased with higher precision values. In tests
where the levels of vocal effort or the transmission channel condi-
tions were matched between the comparison samples, performance

of VT-θ based systems compared favorably to that of MFCC based
systems. Fusion of both systems generally improved upon both in-
dividual systems, indicating that they offer complementary informa-
tion. However, results under mismatched conditions indicate that the
VT-θ based systems are less robust.

The VT model estimation is based on an estimate of the log-
spectral envelope. Differences in fundamental frequency (f0) may
have a profound effect on this estimate. Studies on the effect of high
vocal effort on f0 found an increase in average f0 with higher vocal
effort [16]. With respect to mobile-telephone channel, the Adaptive
Multi-Rate (AMR) codec used in GSM and UMTS mobile telephone
networks uses order 10 linear prediction to encode the spectral enve-
lope, which may affect the vocal tract estimation. Future work will
focus on mitigating those effects. Also, extensions to the vocal tract
model such as paranasal cavities [21] will be the subject of further
investigations as these models provide a more realistic representation
of the nasal cavity acoustics and may thus be better able to capture
speaker-specific properties.
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[11] H. Lei and E. López-Gonzalo, “Importance of nasality mea-
sures for speaker recognition data selection and performance
prediction,” in Proc. Interspeech, 2009, pp. 888–891.

[12] E. Enzinger, P. Balazs, D. Marelli, and T. Becker, “A logarith-
mic based pole-zero vocal tract model estimation for speaker
verification,” in Proc. ICASSP, 2011, pp. 4820–4823.

[13] E. Enzinger and P. Balazs, “Speaker Verification using
Pole/Zero Estimates of Nasals,” Analele Universitatii “Eftimie
Murgu”, vol. XVIII, pp. 33–44, 2011.

1707



[14] C. H. Kasess, W. Kreuzer, E. Enzinger, and N. Kerschhofer-
Puhalo, “Estimation of the vocal tract shape of nasals using a
Bayesian scheme,” in Proc. Interspeech, 2012.

[15] S. J. D. Prince and J. H. Elder, “Probabilistic linear discrimi-
nant analysis for inferences about identity,” in IEEE 11th Inter-
national Conference on Computer Vision (ICCV). IEEE, 2007,
pp. 1–8.
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