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ABSTRACT

Score calibration enables automatic speaker recognizers to make

cost-effective accept / reject decisions. Traditional calibration re-

quires supervised data, which is an expensive resource. We propose

a 2-component GMM for unsupervised calibration and demonstrate

good performance relative to a supervised baseline on NIST SRE’10

and SRE’12. A Bayesian analysis demonstrates that the uncertainty

associated with the unsupervised calibration parameter estimates is

surprisingly small.

Index Terms— calibration, unsupervised learning, Laplace ap-

proximation, automatic speaker recognition

1. INTRODUCTION

Automatic speaker recognizers map trials to scores. A trial has two

parts: some speech of a known speaker, and some of an unknown

speaker. When the same speaker is present in both parts, we have

a target trial. When the speakers differ, we have a non-target trial.

The score is a real number, which is expected to be larger (more

positive) for target trials and smaller (more negative) for non-target

trials. When a speaker recognizer is deployed in a new environment,

which may differ from previously seen environments w.r.t. factors

like language, demographics, vocal effort, noise level, microphone,

transmission channel, duration, etc., the behaviour of the scores may

change. Although the scores can still be expected to discriminate

between targets and non-targets in the new environment, score dis-

tributions could change between environments.

If scores are to be used to make hard decisions, then we need

to calibrate the scores for the appropriate environment. The ideal

calibration of a score, s, would be of the form:

s→ log
P (s|target, environment)

P (s|non-target, environment)

but of course, we are not given these score distributions. Our only

resource would be some data collected from the new environment.

In special cases (usually involving considerable expense), this data

can be supervised, such that each trial is labelled as target or non-

target. In a more realistic scenario however, all or most of this data

would be unsupervised.

To date, most works on calibration have made use of supervised

data. In this paper, we explore the problem of calibration where our

only resource is a large database of completely unsupervised scores.

2. CALIBRATION MODEL

In the supervised setting, score calibration can be viewed as a

straight-forward, 2-class pattern recognition problem, for which

∗The experiments were done while attending the CLSP 2013 Speaker
Recognition Workshop at Johns Hopkins University.

both generative and discriminative solutions exist [1, 2, 3, 4, 5].

For the unsupervised case, we found the generative approach more

convenient. Here we introduce the score model for supervised

calibration, followed by a generalization to the unsupervised case.

2.1. Supervised calibration model

For the supervised case, we adopt the simple generative model of [4].

Denoting targets as H1 and non-targets as H2, we model a score

s ∈ R, with class-conditional Gaussian distributions:

P (s|Hi, C) = N (s|µi, σ
2) (1)

where µ1, µ2 are class-conditional means and σ2 is the common

within-class variance. We collectively refer to C = (µ1, µ2, σ
2)

as the calibration parameters. This model gives an affine calibration

transformation, from score to log-likelihood-ratio, of the form:

logR(s|C) = log
N (s|µ1, σ

2)

N (s|µ2, σ2)
=

d′

σ
s+

µ2
2 − µ2

1

2σ2
(2)

where d′, the separation between targets and non-targets [6],

d
′ =

µ1 − µ2

σ
, (3)

represents accuracy, since the theoretical equal-error-rate is EER =

Φ(− d′

2
).1 At complete overlap, d′ = 0 and EER = 0.5. As d′

increases, the EER decreases.

We refer to R(s|C) as the plug-in LR, because it can be calcu-

lated only if C is given. In reality, these parameters are not given, so

they must be estimated before being plugged into (2). When labelled

calibration training scores are given, maximum-likelihood parame-

ter estimates are straight-forward—see [4], where this plug-in recipe

is shown to give similar accuracy to logistic regression calibration.

2.2. Unsupervised calibration model

In the unsupervised case, we are given a collection of T training

scores, denoted S = s1, . . . , sT , but we are not given the corre-

sponding class labels. Denoting these labels as L = ℓ1, . . . , ℓT ,

we treat them as hidden variables and our calibration model gener-

alizes to a 2-component Gaussian mixture model (GMM), for which

we need an additional mixture-weight parameter, π1. Letting π2 =
1− π1, the GMM likelihood is:

P (S|M) =

T
∏

t=1

2
∑

i=1

πiN (st|µi, σ
2) (4)

1Φ is the normal cumulative density, given in terms of the error-function

as Φ(x) = (1 + erf(x/
√
2))/2.
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whereM = (C, π1) = (µ1, µ2, σ
2, π1) are the GMM parameters.

Now consider a new test score, s′, generated by the same model,

and with associated hidden class label ℓ′ ∈ {H1, H2}. The condi-

tional dependency structure of all the parameters and variables can

be summarized in graphical model [7] notation as:

π1 → L → S ← C → s
′ ← ℓ

′ ← π
′
1 (5)

where we have introduced an independent prior, π′
1, for ℓ′. The im-

portance of this diagram cannot be overstressed. It is used repeatedly

below, to be able to remove irrelevant conditioning terms.2

Our end-goal will be to infer the value of ℓ′, when S and s′ are

observed and π′
1 is given, but where π1,L, C are unknown nuisance

variables. The result could be given as the posterior P (ℓ′|S, s′, π′
1),

or equivalently3, as the predictive likelihood-ratio:

R(s′|S) =
P (s′|ℓ′ = H1,S)

P (s′|ℓ′ = H2,S)
(6)

Our end-goal is the calibration of s′ via the mapping:

s
′ → logR(s′|S)

3. INFERENCE

Here we discuss computational strategies to compute R(s′|S). The

computation involves summing over all of the hidden labels, L, and

integrating out the parameters, M. Unfortunately this cannot be

done in closed form. If conjugate priors are used, the parameters can

be integrated out in closed form, but this makes the labels depen-

dent, so that summing them out requires an intractable sum over 2T

terms. Conversely, if you start with the labels, they can be summed

out in closed form, using (4), but then the parameters cannot be in-

tegrated out in closed form. For this work, we shall follow the latter

route, because the parameter space is just 4-dimensional, allowing

approximate integration in this space.

The numerator and denominator of (6) are obtained by marginal-

izing w.r.t. C and simplifying by (5):

R(s′|S) =

〈

P (s′|C, H1)
〉

S
〈

P (s′|C, H2)
〉

S

(7)

where 〈〉S denotes expectation w.r.t. the parameter posterior P (C|S).
We show below how to derive P (C|S) from the Laplace approxi-

mation for P (M|S).
Although we shall use (7) in practice, we develop an interest-

ing alternative form below that helps to theoretically illuminate the

relationship between the plug-in and predictive LRs.

3.1. Plug-in vs predictive LR

The predictive likelihoods can be expanded by the product rule as:

P (s′|S, Hi) = P (s′|C, Hi)×
P (C|S)

P (C|S, s′, Hi)
(8)

2Observation at a node with convergent arrows induces dependency be-
tween variables linked via this node; when not observed, such nodes block
dependency. Conversely, nodes with divergent or aligned arrows induce de-
pendency when not observed; and block dependency when observed. A node
is ‘observed’ if it appears to the right of the | in probability notation.

3To see this, use (5) to find:
P (H1|S,s′,π′

1
)

P (H2|S,s′,π′

1
)
=

π′

1

1−π′

1

×R(s′|S).

where a ratio of unsupervised to semi-supervised posteriors modu-

lates the plug-in likelihood. The numerator is conditioned only on

the unsupervised scores, while the denominator is conditioned on

one additional supervised score, with assumed label ℓ′ = Hi. Al-

though (8) holds for any value of C with non-zero posteriors, we find

a more convenient form by taking logarithms and the expectation

w.r.t. P (C|S) on both sides:

logP (s′|S, Hi) =
〈

logP (s′|C, Hi)
〉

S
+Di(s

′) (9)

where Di denotes KL-divergence from unsupervised to semi-

supervised posterior:

Di(s
′) =

〈

log
P (C|S)

P (C|S, s′, Hi)

〉

S
(10)

Using (9) in (6) gives the predictive log-LR as:

logR(s′|S) =
〈

logR(s′|C)
〉

S
+D1(s

′)−D2(s
′) (11)

Notice that:

〈

logR(s′|C)
〉

S
= s

′〈d
′

σ

〉

S
+

〈µ2
2 − µ2

1

2σ2

〉

S
(12)

which remains affine in s′, just like (2). Moreover, if P (C|S) has a

sharp, dominant4 peak, then
〈

logR(s′|C)
〉

S
≈ logR(s′|Ĉ), where

Ĉ is the mode of the dominant peak. Finally, if there are many scores

in S, then a single additional score s′ that is similar to the scores in

S, will result in small Di(s
′), so that logR(s′|S) ≈ logR(s′|Ĉ).

Only if S has very few scores, or s′ is very far away, will the Di(s
′)

cause significant non-linearity in logR(s′|S).
We already know that we have a large collection of unsupervised

scores, but it remains to be demonstrated that P (C|S) has a dominant

peak, which we shall do below, via an experimental exploration of

the likelihood. We shall also quantify the sharpness of that peak by

using the Laplace approximation.

3.2. Laplace approximation

The Laplace approximation (LA) is ideally suited to approximating

sharply peaked, low-dimensional posteriors [7, 8]. We have only 4

parameters and the likelihood is sharply peaked because we have lots

of data. The only pitfall is that label swapping causes two identical

peaks in the likelihood. We kill the unwanted peak by assigning a

prior of the form P (M) ∝ u(µ1 − µ2), where u is the unit step

function. We do not need to specify the prior in any more detail, be-

cause any reasonable prior that we might want to assign here would

be effectively constant relative to the sharply peaked likelihood.

Following the standard LA recipe to approximate the posterior

P (M|S), we define:

f(M) = logP (S,M) = log[P (S|M)P (M)] (13)

which is computable by (4). Notice P (M|S) ∝ ef(M). Let M̂
be the dominant mode of f and form a 2nd-order Taylor-series ap-

proximation here. The gradient at the mode is zero, but we need the

Hessian (2nd derivative matrix), denoted Λ. This forms a multivari-

ate Gaussian, approximate posterior:

P̃ (M|S) = N (M|M̂,−Λ−1) (14)

4By dominant, we mean that the peak contains almost all of the probabil-
ity mass in P (C|S).
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Since (7) calls for P (C|S), we still have to marginalize5 (14) w.r.t.

π1. With the Gaussian approximation this is easy. Let C = −Λ−1

denote the covariance of P̃ (M|S) = N (M|M̂,C), then the corre-

sponding marginal P̃ (C|S) is also multivariate Gaussian, where the

elements in M̂ and C corresponding to π1 have been removed [7].

In summary, we get the 4-dimensional mode and Hessian, invert the

Hessian and then discard one dimension.

3.2.1. Model parametrization

The LA is not invariant to parametrization [8]. Moreover, it is ob-

vious that the true posterior for the parameters π1 and σ2 cannot be

Gaussian. But, for a sharply peaked posterior, the parametrization is

not that important and the behaviour far from the maximum is almost

irrelevant. As long as f(M) is smooth enough so that a 2nd-order

approximation is accurate close to the maximum, the posterior peak

will be approximately Gaussian. If the likelihood magnitudes are

large, then by the time the 2nd-order approximation becomes inac-

curate, this inaccuracy becomes irrelevant because of the effect of

the exponentiation. The reader is encouraged to consult Wikipedia,6

where this is graphically illustrated. Our experimental results below

are reported for the parametrization [µ1, µ2, log(σ
2), log(π1)].

4. EXPERIMENTS

We used two score corpora, DAC and ABC:

The Domain Adaptation Challenge (DAC)7 has telephone speech

from the LDC’s Switchboard and Mixer databases as well as NIST

SRE’10 [9]. It has three parts:

Recognizer: Switchboard was used to train the hyperparameters

of an i-vector PLDA speaker recognizer [10], which was then used

to produce the scores below.

Calibration: About 7 million trials (single enrollment), from

pre-SRE’10 Mixer corpora, provided the unsupervised scores, S,

with target proportion about 4% and (empirical) EER = 2.38%.

Evaluation: About 400 000 trials, composed of pairs of seg-

ments from SRE’10, provided the test scores, s′, with EER =
5.54%.

The ABC corpus used a different speaker recognizer, applied to a

different data set, drawn from the AGNITIO-BUT-CRIM submis-

sion to NIST SRE’12 [11, 12]. The mixture of conditions was more

diverse than for DAC, having telephone and microphone speech,

variable number of enrollment segments, full and truncated test seg-

ments and varied noise levels.

Recognizer: Switchboard, Fisher and pre-SRE’12 Mixer was

used to train an i-vector PLDA system.

Calibration: About 42 million scores, S, from pre-SRE’12

Mixer. The target proportion is about 0.07%, and EER = 2.38%.

Evaluation: About 9 million test scores, s′, from SRE’12, with

EER = 3.25%.

4.1. Exploration of likelihood

The success of the whole venture depends critically on the behaviour

of the GMM likelihood, P (S|M), given by (4). If we are a-priori

5Recall M = (C, π1). By (5), π1 and C are dependent in P (C, π1|S),
so we cannot just ignore π1.

6en.wikipedia.org/wiki/Laplace_approximation
7www.clsp.jhu.edu/workshops/archive/

ws13-summer-workshop/groups/spk-13/.

very uncertain about the proportion of targets in the unsupervised

data, and also about the accuracy of the recognizer, it is not at all

obvious whether there is enough information in the likelihood8 to be

able to infer calibration parameters with a useful level of accuracy.

Moreover, since our inference tools (plug-in and LA) both rely on

finding likelihood optima, it is important to know whether the likeli-

hood is plagued by local optima.9

To learn how the likelihood behaves, we did an exhaustive ex-

perimental exploration of the parameter space, (µ1, µ2, σ
2, π1). To

facilitate visual representation, we used a 2-dimensional model rep-

resentation, namely (d′, log π1

1−π1

), which we plotted against log-

likelihood, where the remaining two degrees of freedom were opti-

mized.10 Recall from section 2.1 that d′ represents accuracy, while

π1 represents target proportion. If the likelihood has a single dom-

inant peak for these two critical parameters, then there is hope that

the calibration exercise will work.

We made such plots for the calibration parts of DAC and ABC.

The results are similar. In figure 1 we show the latter, which we

believe is more challenging, because of the smaller target proportion.

The log-likelihood is smooth as a function of d′, but is bi-modal as

a function of π1—a warning that initialization for the EM algorithm

is important. Although the modes look flat, and similar, in the log-

likelihood plot, the normalized11 likelihood plot of figure 2 reveals

that there is just a single, sharp, dominant peak, the location of which

is given in table 2.

4.2. Analysis of sharpness

To approximate P (M|S), we use the LA recipe of section 3.2. The

mode is found with the EM-algorithm. Complex-step differentia-

tion [14] and the Pearlmutter trick [15] are used for the Hessian.

We find the error-bars (posterior standard deviations [13, 8]) for the

parameters to be suprisingly small:

parametrization µ1 µ2 log(σ2) log(πi)
ABC error-bars 0.0226 0.0004 0.0002 0.0071

DAC error-bars 0.1183 0.0192 0.0006 0.0022

4.3. Calibration experiments

The sharpness of the parameter posterior shows there is no practi-

cal difference between the plug-in and predictive likelihood-ratios.

We therefore proceed to report our final experimental results for

maximum-likelihood plug-in calibration. We estimated the param-

eters on the calibration parts of DAC (7 million scores, 4% targets)

and ABC (42 million scores, 0.07% targets). The performance of

these calibrations was tested on the independent evaluation parts of

those corpora, in terms of normalized Bayes error-rate, also known

as normalized DCF [16]:

normDCF(π′
1) =

π′
1Pmiss(π

′
1) + (1− π1)

′Pfa(π
′
1)

min(π′
1, 1− π′

1)
(15)

8The likelihood function, P (S|M), represents all of the information that
our chosen model can extract from S.

9This is true even for more sophisticated Bayesian tools, like variational
Bayes and Gibbs sampling [7].

10Integrating them out using LA would also be feasible, but we found this
unnecessary—when d′ and π1 are fixed, there remains very little uncertainty
about the scale and location. The constrained optimization was done with
a bespoke EM algorithm, where the M-step had to make use of numerical
optimization.

11Subtract the maximum over the graph and then exponentiate [13].
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Fig. 1. logP (S|M) for ABC
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Fig. 2. normalized P (S|M) for ABC

where Pmiss(π
′
1) and Pfa(π

′
1) are the empirical miss and false-alarm

error-rates obtained when using the log-likelihood-ratios to make

Bayes decisions at the theoretical threshold, − logit(π′
1). The de-

nominator is the Bayes error-rate for the default decision that always

accepts, or always rejects, depending only on π′
1. Smaller values of

normDCF are better, while a value of smaller than one shows the

recognizer is doing better than the default decision.

Table 1 reports normDCF for 4 different values of π′
1. For both

databases, we compare the supervised recipe of [4] against the pro-

posed unsupervised recipe. The supervised method used the same

data as the unsupervised recipe, except that the labels were sup-

plied. We also report minDCF, which uses an empirically optimized

threshold at each operating point, where the optimization makes use

of the evaluation labels. Finally, for DAC, we also report results for

a supervised calibration trained on the mismatched12, Switchboard

data. The high error-rates for this case emphasizes the need for cali-

bration on matched data.

Surprisingly, for the DAC database, the unsupervised method

12Switchboard is at least a decade older than Mixer, during which time
telephony changed dramatically [17].

does mostly better than the supervised one. This may be because of

errors13 in the labels supplied to the supervised method.

In an effort to test whether our method holds up for very low

target proportions, we noticed that we could go as far as removing

all trials labelled as targets, so that S contained only trials labelled as

non-targets. These entries in the table are marked as unsupervised*.

The fact that calibration still works in these cases can perhaps also

be attributed to labelling errors.

For additional insight, tables 2 and 3 compare the estimates of

model and calibration parameters for the supervised and unsuper-

vised cases.

π′
1 0.001 0.01 0.1 0.5

ABC supervised 0.32 0.22 0.13 0.08

ABC unsupervised 0.33 0.24 0.16 0.11

ABC unsupervised* 0.32 0.23 0.15 0.10

ABC minDCF 0.31 0.21 0.12 0.06

DAC mismatched 0.73 0.54 0.35 0.21

DAC supervised 0.63 0.44 0.28 0.13

DAC unsupervised 0.65 0.43 0.25 0.11

DAC unsupervised* 0.65 0.43 0.24 0.12

DAC minDCF 0.63 0.42 0.24 0.11

Table 1. Calibration performance in terms of normDCF.

µ1 µ2 σ d′ π1

ABC super 8.2 -5.9 2.9 4.9 6.6e-4

ABC unsup 9.9 -5.9 2.9 5.5 5.6e-4

ABC unsup* 9.6 -5.9 2.9 5.4 5.1e-5

DAC super 34.0 -169.3 48.4 4.2 3.9E-2

DAC unsup 45.9 -168.7 48.8 4.4 3.4E-2

DAC unsup* 72.3 -169.3 48.0 5.0 1.4E-5

Table 2. GMM parameter estimates

scale offset

ABC super 1.7 -2.0

ABC unsup 1.9 -3.8

ABC unsup* 1.9 -3.5

DAC super 0.087 5.9

DAC unsup 0.090 5.5

DAC unsup* 0.105 5.1

Table 3. Calibration parameters

5. CONCLUSION

The outcome of this work held two surprises for us. The first is that

unsupervised calibration works at all. The second is that the miss-

ing labels contribute surprisingly little uncertainty to the parameter

estimates.

For future work on different data, we caution against blind ap-

plication of the plug-in recipe. We feel that some Bayesian analysis

similar to ours should also be done to illuminate the interaction be-

tween model and data.

13Some Mixer subjects registered multiple times, with different PINs,
thereby causing some target trials to be falsely labelled as non-targets.
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