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ABSTRACT

Short-time spectral characterizations of the human voice have

proven to be the most dependable features available to modern

speaker recognition systems. However, it is well-known that high-

level linguistic information such as word usage and pronunciation

patterns can provide complementary discriminative power. In an

automatic setting, the availability of these idiolectal cues is depen-

dent on access to a word or phonetic tokenizer, ideally in the given

language and domain. In this paper, we propose a novel approach to

speaker recognition that leverages recently developed zero-resource

term discovery algorithms to identify speaker-characteristic lexical

and phrasal acoustic patterns without the need for any supervised

speech recognition tools. We use the enrollment audio itself to score

each trial and perform no model training (supervised or unsuper-

vised) at any stage of the processing, allowing immediate applica-

tion to any language or domain. We evaluate our approach on the

extended 8-conversation core condition of the 2010 NIST SRE and

demonstrate a 16% relative (0.06 absolute) reduction in minDCF

when combined with a state-of-the-art unsupervised i-vector cosine

system.

Index Terms— Zero resource, unsupervised term discovery,

speaker recognition, idiolect

1. INTRODUCTION

Current state-of-the-art speaker recognition systems rely on charac-

terizations of the short-time spectral content of the speech signal,

where clustering and averaging at the frame level limits the inter-

ference of conversation specific linguistic content. These methods,

the most successful being recent i-vector techniques [1], have dom-

inated evaluations in large part due to their ability to function with

very limited enrollment and test audio. However, robustness to noise

and channel effects remains a major challenge [2], leaving an open-

ing for alternative high-level features to play a continued role.

In addition to a characteristic spectral distribution, speakers ex-

hibit characteristic language usage patterns. Commonly known as

idiolect, these patterns include those parts of an individual’s vocab-

ulary, grammar, and pronunciation not commonly shared by other

speakers of their language and dialect. While the prominence of

these high-level linguistic cues varies by individual, they can be-

come distinctive for some when sufficient enrollment data is pro-

vided. This notion was first introduced to the speaker recognition

community by Doddington [3] in an effort to capture characteristic

word usage and grammatical patterns using n-gram features derived

from manual transcriptions of the Switchboard corpus. This was

later extended to automatic transcriptions and was demonstrated to

provide competent standalone performance (when several minutes of

enrollment audio is available) and complementarity with short-time

spectral systems [4, 5, 6]. However, the dependence of these meth-

ods on in-domain and in-language speech recognition tools greatly

limits the versatility and scalability of the technology.

Even when available, speaker-independent speech recognizers

are trained to discard speaker-specific pronunciation patterns of

the words and phrases present. To capture these aspects of one’s

idiolect, past efforts have considered prosodic features [7], sub-

word unit n-grams generated by ensembles of phonetic recognizers

(known as parallel phonetic recognition followed by language mod-

eling, or PPRLM) [8, 9], explicit pronunciation modeling [4, 10],

and hidden Markov models (HMM) of words shared between the

enrollment and test audio [11]. Each of these approaches have been

demonstrated to provide useful signal for speaker recognition, but

they too have weaknesses. Prosodic features are used to augment

traditional acoustic feature spaces and are not designed to support a

system in their own right. While the PPRLM and HMM approaches

can perform well on their own, like the word n-gram approach both

require access to supervised speech recognition tools.

In this paper, we propose a scalable, fully unsupervised approach

to exploiting idiolect for speaker recognition that removes any de-

pendency on supervised speech recognition tools. In their place, we

apply efficient spoken term discovery algorithms [12], which iden-

tify repeating acoustic feature trajectories that typically correspond

to words and phrases. These automatically discovered units, which

we call pseudoterms, have been demonstrated to be a suitable proxy

for words in vector space document models [13]. By choosing a

speaker-dependent acoustic front-end, we can discriminate based on

both the words and phrases speakers tend to say as well as how they

say them. Trials are scored using normalized inner products of the

pseudoterm frequency distributions of the enrollment and test au-

dio. Unlike similarly motivated past approaches [14, 15, 16], we do

not require predefined word segmentations or subword/word mod-

els. Using the 2010 NIST speaker recognition evaluation data, we

measure standalone performance comparable to the best idiolect-

based approaches reported in the literature and demonstrate signifi-

cant complementarity with state-of-the-art i-vector technology.

2. SYSTEM ARCHITECTURE

In traditional word-based idiolect approaches for speaker recogni-

tion, a spoken document is characterized by its n-gram frequency

distribution relative to the background distribution estimated from

a large multispeaker corpus. In our proposed approach, we replace

word n-grams with the notion of pseudoterms, defined in [13] to be

any acoustic pattern of at least approximately 0.5 s in duration that

is repeated in a given set of speech documents. Pseudoterms most

often correspond to words and phrases, but may also be silence re-

gions, audio anomalies, or filled pauses. By using speaker dependent

acoustic representations, the “vocabulary” of pseudoterms is roughly

equivalent to the Cartesian product of the set of word n-grams and
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the set of speakers. Our goal is to develop a measure that character-

izes pseudoterm frequency distributional similarity between cuts.

In the traditional speaker recognition evaluation paradigm, the

goal is to provide confidence scores for a set of trials. Each trial

involves scoring a single test cut against a given known enrollment

speaker for which we have been provided one or more enrollment

cuts. In addition, for purposes of score normalization and additional

non-speech filtering, we assume we have access to two sets of unla-

beled development cuts that do not involve the enrollment speakers.

Our proposed approach to generating normalized trial confidence

scores consists of four steps: (i) use the unsupervised term discov-

ery system to compare the enrollment cuts against a development set

to identify non-speaker-specific pseudoterms to be filtered from the

enrollment data; (ii) use the unsupervised term discovery system to

identify pseudoterms shared between the filtered enrollment cuts and

the second development set to extract score normalization statistics;

(iii) use the unsupervised term discovery system to identify pseu-

doterms shared between the filtered enrollment cuts and the test cuts

and use them to generate trial scores; and (iv) apply per enrollment

speaker score normalization for pooled evaluation metrics. Each of

the involved subcomponents are described below.

2.1. Efficient Unsupervised Term Discovery

We use the scalable term discovery system presented in [12] to drive

all stages of system processing. Given its central role in our speaker

recognition system, we include an abbreviated summary of the dis-

covery system architecture. We begin with two audio cuts (e.g.

an enrollment cut and a test cut) for which we extract two acous-

tic feature vector times series (e.g. PLP or MFCC) denoted X =
x1x2 . . . xn and Y = y1y2 . . . ym, where each xi ∈ R

d and yj ∈
R

d. The goal is to identify all high similarity segments shared be-

tween X and Y without having to resort to brute force O(nm)
search presented in [17]. The scalable approach uses a collection of

approximation techniques to accomplish the search in nearly linear

time, as described below.

Before we can identify repeated segments, we must efficiently

identify individual nearby frames both X and Y . To do this we

apply an approximate nearest neighbor search method based on two

randomized algorithms: locality sensitive hashing (LSH) and point

location in equal balls (PLEB) [18]. LSH is a randomized hashing

technique that maps points x ∈ R
d to bit signatures h(x) ∈ {0, 1}b

that preserve the ability to approximate distances in the original

vector space. We consider the variant of LSH that preserves cosine

distance, which is accomplished by projecting x onto b random

d-vectors and thresholding at zero, each producing a bit that en-

codes membership in a randomly oriented halfspace. Denoting

Hamming distance between bit signatures by H(·, ·), then the

cosine distance between xi, yj ∈ R
d can be approximated by

1 − cos (H(h(xi), h(yj))π/b) with an approximation error that

approaches zero as b → ∞.

The PLEB algorithm constrains nearest neighbor search space

by using lexicographic sorting (i.e. alphabetical order if treated as

strings) of LSH signatures. This sort ordering has the interesting

property that adjacent signatures share a common prefix of bits,

which implies a bound on the Hamming distance and, in turn, the

cosine distance. Thus, we need only check a constant beam width

of B nearby points in the list against a prescribed distance threshold

δ for inclusion in the sparse approximate distance matrix. Since the

lexicographic sort gives preference to the initial bits, we must per-

mute the signatures P times, each time resorting and rescanning. In

the present case, for each permutation we sort the LSH signatures of

X and Y separately. Then, for each signature h in the sorted list for

X , we consider B points centered around the would-be insertion po-

sition of h in the sorted list for Y . While exhaustive cosine distance

matrix computation requires O(nm) time, PLEB for P permuta-

tions requires only O(Pm logm+Pn log n) sorting operations and

O(PBn) neighbor comparisons. For the problem sizes involved in

the present system, the linear-time neighbor comparisons dominate.

Given the sparse (approximate) neighbor distance matrix, M ,

computed using LSH and PLEB above, the next step is to efficiently

search for runs of frame-level matches between X and Y . We em-

ploy a two-pass coarse-to-fine strategy. The first pass employs a

collection of image processing techniques to M . First, we trans-

form the matrix to binary form M ′, where M ′

ij = 1 if Mij < δ
and 0 otherwise. Second, we apply and diagonal median filter of

width 50 frames to M ′, which imposes a minimum match duration

and removes noise introduced by LSH. Finally, we using a Hough

transform to identify remaining diagonal line segments. The second

pass involves using the center points of these diagonal line segments

as starting points for local segmental dynamic time warping (DTW)

search. Complete details are provided in [19].

The main challenge for the term discovery technology on its

original intended application has been identifying word and phrase

repetitions across speaker. However, when applied to speaker recog-

nition, we can turn this difficulty into a computational advantage.

First, we are now only interested in very similar within-speaker word

repetitions, meaning we can safely reduce PLEB beam width B
without substantial loss in discovery recall (in the experiments be-

low, two 5 minute cuts can be compared in less than 1 second). Sec-

ond, we can reduce the cosine distance threshold δ for inclusion in

the distance matrix, which reduces the computational burden on the

downstream two-pass segment search.

2.2. Filtering Non-discriminative Audio

Every acoustic pattern from an enrollment cut that matches across

speaker can potentially increase non-target trial scores. The pri-

mary suspects for this failure mode are silence regions missed by

the speech activity system, anomalous audio events (e.g. tones), and

filled pauses. If provided an unlabeled collection of out-of-set devel-

opment cuts, we can easily identify these error-inducing segments

of the enrollment audio using the above-described term discovery

algorithm. We consider any discovered segments as additional non-

speech regions and remove them from the speech activity marks for

all subsequent processing stages. While this process is completely

unsupervised, it could be easily swapped for supervised variants that

attempt to cluster pseudoterms and discriminatively identify those

that appear in a speaker’s enrollment speech and nowhere else. We

leave exploration of supervised techniques for future work.

2.3. Confidence Scoring and Normalization

After filtering the non-discriminative portions of the enrollment cuts

according to the above procedure, we can proceed to score each trial

using the term discovery system. All enrollment cuts for a given

speaker are implicitly merged and taken as X , while the test cut

is taken as Y . The above-described term discovery system applied

to X and Y produces a collection of K enrollment-test repetitions,

each characterized by a pair of intervals and their DTW alignment

cost. We first apply a DTW threshold T with the goal of limiting

the pseudoterms considered to those arising from high confidence

matches likely to involve the same speaker.
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A desirable score should capture the similarity between the

pseudoterm frequency distributions FX ∈ N
w and FY ∈ N

w for

the enrollment speech and the test cut, respectively, where w is the

cardinality of the speaker-specific pseudoterm vocabulary. How-

ever, to explicitly estimate these distributions for a given audio file,

we would have to proceed to cluster the individual repetitions into

discrete pseudoterm categories as done in [13]. To avoid this, we

notice that if a given pseudoterm occurs n1 times in document X
and n2 times in document Y , the discovery system will generate

n1 ·n2 matches. It follows that the total match count K is itself an

estimate of the inner product between FX and FY that we define

as our raw trial score. In lieu of L1 or L2 normalization common

in bags-of-words applications, which would again require explicit

pseudoterm clustering, we instead divide each trial score by the

logarithms of the enrollment and test speech durations.

The proposed count-based trial scores above approximately fol-

low a zero-inflated exponential distribution with substantially shorter

decay length for non-target trials than for target trials. To enable

measurement of pooled performance metrics, we perform a Z-norm

analogue for each enrollment speaker as follows. First, we gen-

erate a set of count-based scores for the speaker’s enrollment cuts

against a moderately-sized collection of unlabeled out-of-set devel-

opment cuts. Next, we fit a shifted exponential distribution of form

p(s) = exp(−(s − s0)/τ) to the non-zero development set scores

only, where τ is the decay length and s0 > 0 is an offset of the dis-

tribution away from zero. Each test trial score s is then normalized

according to (s− s0)/τ .

3. EXPERIMENTS

We evaluated our pseudoterm-based speaker recognition system on

the 8 conversation training condition and extended core test condi-

tion of the 2010 NIST Speaker Recognition Evaluation.1 This in-

volves over 687K trials (442 target) involving 267 enrollment speak-

ers. We used PLP features as input to the term discovery system

(13 cepstral coefficients, plus velocity and acceleration, with 25 ms

window size and 100 Hz frame rate). From past success on a sep-

arate speaker recognition evaluation, we used b = 64 bit LSH sig-

natures, a beam width of B = 5, P = 8 bit ordering permutations,

a cosine distance threshold of δ = 0.5, and DTW alignment cost

threshold of T = 0.15. We used two unlabeled development sets of

size 2000 and 1860 conversation sides from previous SREs to per-

form the filtering described in Section 2.2 and to estimate the score

normalization statistics as described in Section 2.3, respectively. Be-

fore applying term discovery, we filtered non-speech audio using the

speech activity system described below in Section 3.1. We com-

pared against a state-of-the-art i-vector system, using both unsuper-

vised cosine scoring and supervised probabilistic linear discrimina-

tive analysis (PLDA) scoring, as described below in Section 3.2.

3.1. Speech Activity System

As with any speaker verification system, our term discovery ap-

proach benefits from an initial screening that removes segments of

non-speech that would otherwise produce deluge of uninformative

acoustic matches. Toward this end, we designed a new, robust speech

detection system based on modulation spectral analysis. Briefly, our

1Our original effort was on NIST SRE 2012. Due to our system’s impec-
cable ability to identify duplicate cuts as gigantic pseudoterms, we discovered
that LDC constructed test cuts by splicing segments of enrollment data. As a
result, we decided to revert the SRE 2010 evaluation.

Table 1. 2010 NIST SRE performance of the proposed and baseline

systems for the 8 conversation extended trial set. The subscript of

minDCF indicates the prior on target trials used in the cost function.

System EER (%) minDCF0.01 minDCF0.001

Pseudoterms 7.24 0.577 0.752

i-vector cosine 1.55 0.202 0.378

+ Pseudoterms 1.58 0.162 0.317

i-vector PLDA 0.45 0.088 0.191

+ Pseudoterms 0.48 0.079 0.177

method estimates the power spectrum of individual cepstral coeffi-

cients over a sliding window 500 milliseconds long. The spectral

centroid [20] and the proportion of energy in the 2-8 Hz modula-

tion frequency band [21] represent two reductive yet discriminative

features for identifying the presence of syllabic dynamics associated

with speech. For adaptability to variable acoustics, we estimated

a speech/non-speech decision threshold file-by-file using k-means

clustering in the centroid-syllabic features, with k equal to 2.

3.2. Baseline i-vector Systems

The two i-vector based systems used 40-dimensional MFCCs (20

base + deltas) with short-time mean and variance normalization.

They were configured in a completely gender-independent way. The

i-vector extractor [1] used a 2048 mixture universal background

model and produced 600 dimensional i-vectors. All i-vectors were

centered and whitened based on first and second order statistics

derived from an in-domain unlabeled set. Additionally, the PLDA

system [22] used a 400 dimensional speaker subspace, and it was

trained using 3790 speakers with a total of 36470 conversation

sides from SRE04, 05, 06, and 08. Score fusion of the proposed

pseudoterm and i-vector systems was performed using 5-fold cross-

validation. Here, the fusion scores for each fold were generated

using a logistic regression trained on the labeled trials in the re-

maining four folds. The fusion scores for all five folds were then

combined into a single ranked list for scoring.

3.3. Results

Table 1 lists the equal error rate (EER) and minimum decision cost

function (minDCF) at two target trial priors (0.01 and 0.001, with

equal miss and false alarm costs) for the proposed pseudoterm and

i-vector systems, as well as the fusion of the two. We measured pseu-

doterm system performance that is comparable to standalone perfor-

mance of best high-level idiolectal features considered in past [5].

Since the pseudoterm system makes no use of labeled out-of-set

data, its fair baseline is the unsupervised i-vector system using co-

sine scoring. The minDCF in the low false alarm region (target prior

of 0.001) is 2X that of the i-vector cosine system, but fusion of the

two produces a 16% relative (0.06 absolute) reduction. Additional

supervision available to the PLDA system functions to erase most of

the complementarity of the two systems, though future supervised

versions of our pseudoterm approach may restore fusion gains.

Figure 1 shows detection error trade-off (DET) curves for the

pseudoterm system, baseline i-vector systems, and the fusion of the

two. The pseudoterm system has a more horizontal slope than the

i-vector systems that translates to improvements in minDCF and not

EER in the fusion results. We see clear separation introduced by the

pseudoterm system when fused with the unsupervised i-vector co-

sine system which is reflected in the substantial reduction in minDCF
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listed in Table 1. The lack of clear separation between the PLDA sys-

tem with and without fusion indicate that the minDCF improvements

listed in Table 1 are not significant.

4. DISCUSSION

Short-time spectral speaker recognition methods are capable of rep-

resenting a speech cut of arbitrarily short duration, accumulating in-

formation at the frame rate (100 Hz). Our pseudoterm system, on

the other hand, can at best accumulate speaker identifying informa-

tion at the rate of occurrence of words (1 Hz). When given a fi-

nite amount of enrollment and test cut speech, this low accumulation

rate can combine with limited idiolect variation from some speakers

to produce zero (or near-zero) scoring target trials. In these cases,

target trials are equivalent to empty cuts and are indistinguishable

from non-target trials. This phenomena produces a miss rate floor

that would remain insurmountable even if we had perfect ranking of

non-zero scoring trials, leading to the substantial gap in performance

between the pseudoterm and i-vector systems.

To further illustrate this behavior, Figure 2 shows a scatterplot

of two pseudoterm-only and baseline i-vector cosine scores for target

(open circles) and non-target (dots) trials. We see that the i-vector

system scores for each trial subset are normally distributed, while

those for the pseudoterm system are closer to an exponential form.

The non-target trial scores for the pseudoterm system are concen-

trated under a score of 10, with a high degree of overlap with a large

proportion of the target trials. However, when the pseudoterm score

is greater than 10, the bias towards target trials is drastic and the tail

is long. This implies that when the idiolect signal is present it is a re-

liable indicator. However, its presence for only a fraction of speakers

leads to substantially higher error rates than the i-vector baseline.

We can clearly observe from Figure 2 the imperfect correlation

between the two system scores that results in the fusion gains listed

in Table 1. The 0.06 absolute reduction in minDCF0.001 from fusing

the pseudoterm and the i-vector cosine system can be broken down

into a 6% reduction in misses and a much larger 46% reduction in

false alarms. The reduction in miss rate arises from boosting target
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Fig. 2. Comparison of i-vector cosine and pseudoterm scores.

trials where channel mismatch limits short-time spectral similarity,

but that contain an abnormally high frequency of speaker charac-

teristic pseudoterms (e.g. the speaker consistently utters “right” or

“okay” in the back-channel). The reduction in false alarms arises

from suppressing trials where spectrally similar speakers have rela-

tively little idiolectal overlap.

Finally, we consider the important issue of run-time. The com-

putational efficiency of i-vector systems is well documented, with

feature extraction (acoustic features plus i-vectors) running at ap-

proximately 50X faster than real-time, with essentially negligible

runtime for both cosine and PLDA scoring. For the pseudoterm sys-

tem, acoustic feature extraction plus LSH runs about 500X faster

than real-time. However, the computational bottleneck transfers onto

our scoring procedure, which requires us to perform term discovery

between enrollment speech and the test cut for each trial. The run-

time for this step depends on both the amount of enrollment speech

and test cut duration. We found that for a speaker with the average

amount of enrollment speech, trials can be scored 50X faster than

real-time (in the duration of the test cut). However, this scoring pro-

cedure must be repeated for each enrollment speaker.

5. CONCLUSIONS

We have presented a fully unsupervised approach to discovering a

speaker’s idiosyncratic pronunciation and word usage for applica-

tion to speaker recognition. Unlike previous idiolectal approaches,

we do not require any in-language speech recognition tools, allow-

ing us to match the domain versatility of short-time spectral fea-

tures. However, like other idiolectal approaches, we require a sub-

stantial amount of enrollment speech and even when provided, the

strength of the idiolectal cues can vary widely by speaker. Still, we

measure substantial minDCF reductions when fused with a state-of-

the-art unsupervised i-vector baseline system. Future work on our

pseudoterm-based system will include exploring alternative acous-

tic features as input and introducing supervision (comparable to that

used for PLDA) to the scoring procedure.
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