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ABSTRACT

Many studies have proven the effectiveness of discriminative
training for speaker verification based on probabilistic linear dis-
criminative analysis (PLDA) with i-vectors as features. Most of them
directly optimize the log-likelihood ratio score function of the PLDA
model instead of explicitly train the PLDA model. But this opti-
mization process removes some of the constraints that normally are
imposed on the PLDA log likelihood ratio score function. This may
deteriorate the verification performance when the amount of training
data is limited. In this paper, we first show two constraints which
the score function should follow, and then we propose a new con-
strained discriminative training algorithm which keeps these con-
straints. Our experiments show that our method obtained significant
improvements in the verification performance in the male trials of
the telephone speaker verification tasks of NIST SRE08 and SRE10.

Index Terms— PLDA, discriminative training, speaker verifi-
cation, i-vector

1. INTRODUCTION

In recent years, the combination of i-vector [1], [2] and probabilistic
linear discriminant analysis (PLDA) [3], [4] has become the state-
of-the-art system in speaker verification. In this system, an i-vector
extractor, maps utterances into low dimensional vectors known as i-
vectors. The i-vectors contains information related to speaker iden-
tity as well as irrelevant factors such as the transmission channel or
the speakers’ emotion. Given two i-vectors, i.e., one from the enroll-
ment phase and one from the test phase, the PLDA model separates
speaker factors from irrelevant factors and provides a log-likelihood
ratio (LLR) score for the two i-vectors being from the same speaker
or not.

In this study we point out two interesting properties of the PLDA
LLR score function. The first, and most interesting, is a directional
property; the score will always be higher for two i-vectors pointing
in the same direction than for two i-vectors pointing in the oppo-
site direction. Since the effectiveness of cosine similarity, (e.g., [2]
and [5]), indicates that speakers are well discriminated by angular
information, this property seems desirable. The second is a length
property; the score for two equal i-vectors will be reduced if one of
them is scaled with a factor α and the other with factor 1/α.

In the original work for face recognition, [3], as well as in many
works in speaker verification (e.g., [4] and [6]), the PLDA model pa-
rameters have been optimized under the Maximum likelihood (ML)
criteria.

In [7] and [8], discriminative training of the PLDA model pa-
rameters were shown to outperform ML training in speaker verifi-
cation. Their proposed discriminative training scheme optimizes the
log-likelihood ratio score function of the PLDA model directly, in-
stead of training the PLDA model explicitly. This optimization pro-

cess allows the score function to be more general than the score func-
tion of a standard (ML trained) PLDA model. As a consequence, the
above mentioned properties of the PLDA LLR may not be preserved.

Obviously, given sufficiently large amounts of training data, a
more general model can be expected to perform better than a con-
strained model. But training a PLDA model already requires very
large amounts of training data. In addition, it has been shown that
discriminative training of probabilistic models needs more training
data than ML training [9]. Adding extra flexibility to the model may
therefore be more harmful than useful when the amount of training
data is limited. This taken into account, keeping the good properties
of PLDA model and use them as constraints in the discriminative
training, may improve the verification performance .

In this study, we propose a new constrained discriminative train-
ing algorithm which keeps some of the properties of the PLDA scor-
ing function. Experimentally, we show that our method obtained
significant improvements in the verification performance in the male
trials of the telephone speaker verification tasks of NIST SRE08 and
SRE10.

2. I-VECTOR AND PLDA BASED SPEAKER
VERIFICATION

2.1. Log-likelihood ratio (LLR) score

In the i-vector system [2], it is assumed that a Gaussian Mixture
Model (GMM) -supervector, µ, corresponding to an utterance can
be modeled as

µ = µ̄+ Tω, (1)

where ω is a random vector known as the i-vector, T is a basis ma-
trix for the total variability space, i.e., speaker and channel variabil-
ity, of µ, and µ̄ is the mean of µ. It is assumed that ω follows
standard normal distribution and that its dimension, d, i.e., the rank
of T , is lower than dimension of µ̄.

In [4], it was proposed to use PLDA in speaker verification with
i-vectors as features. In that study, a modification of the original
PLDA model, suitable for low-dimensional features was suggested.
It models i-vectors, ω, as

ω = m+ V y +Dz, (2)

where y and z are random vectors depending on the speaker and
session respectively. The speaker variability is given by V and the
channel variability is given by D. The elements of y and z are as-
sumed to be independent with standard normal distribution. Usually,
rank(V ) < d but rank(D) = d gives the best performance. For the
special case when rank(V ) = d, the model is referred to as the two-
covariance model [10].

For scoring two i-vectors, ωi and ωj , we need to calculate the
log-likelihood ratio of the hypothesis that the two i-vectors are from
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the same speaker,Hs, and the hypothesis that they are from different
speakers,Hd, i.e.,

sij = log
p(ωi,ωj |Hs)

p(ωi,ωj |Hd)

= log

∫
P (ωi|y)P (ωj |y)P (y)dy∫ ∫

P (ωi|y1)P (ωj |y2)P (y1)P (y2)dy1dy2
, (3)

since the speaker factors, y, are the same if the two i-vectors are from
the same speaker. Eq. (3) has a closed form solution. It is given by:

sij = ωT
i Pωj + ωT

j Pωi + ωT
i Qωi + ωT

j Qωj

+(ωi + ωj)T c+ k, (4)

where

P =
1

2
Σ−1

tot Σac(Σtot − ΣacΣ
−1
tot Σac)

−1 (5)

Q =
1

2
Σ−1

tot − (Σtot − ΣacΣ
−1
tot Σac)

−1 (6)

c = −2(P +Q)m (7)

k =
1

2
(log |Σtot| − log |Σtot − ΣacΣ

−1
tot Σac|)

+mT 2(P +Q)m, (8)

and Σac = V V T and Σtot = V V T +DDT .

2.2. Constraints on the PLDA LLR score function

P and Q are symmetric and have the same rank as V [6]. In addi-
tion, it can be shown based on Eq. (5) and (6), that the matrices, P
andQ, are constrained as follows:

1. P is positive-definite
2. Q is negative-definite

In the above, definite needs to be replace with semidefinite when
the rank of V is lower than d. Notice that these constraints are not
sufficient to keep all the original properties of a PLDA model.

2.3. Properties of the PLDA LLR score

In this subsection we show that the above mentioned constraints on
P andQ gives the score function in Eq. (4) some interesting proper-
ties. The first constraint leads to a directional property. Consider an
i-vector, ω, scored against both αω and −αω, where α is a positive
constant. That is, in the first trial, ω is scored against an i-vector
pointing in same direction and, in the second trial it is scored against
an i-vectors pointing in the opposite direction. If the i-vectors are
centered around m, the difference between the scores given by Eq.
(4) of these two trials is

s(ω, αω)− s(ω,−αω) = 2αωTPω. (9)

In other words, the score of the same direction trial will be guaran-
teed to be larger than the score of the different direction trial if and
only if P is positive definite.

The second constraint leads to a length property:

s(ω,ω) > s(αω,
1

α
ω) (10)

This property means that two i-vectors of equal length and direc-
tion will obtain a higher score than two i-vectors having just equal
direction. At a first glance, this may not seem to be a useful prop-
erty when the i-vectors are length-normalized, but notice that after
i-vectors have been length normalized, their mean is not necessarily
zero so that centered around this mean, their lengths are not always
equal to 1.

3. DISCRIMINATIVE PLDA TRAINING

In [3] and [4] the parameters m, V and D were trained by the
ML criteria. Instead of using the ML criteria for training the PLDA
model, we can use discriminative training, which directly optimizes
the model for discriminating between the same speaker trial and the
different speaker trial. This was first proposed in [7] and [8]. In
those studies, the parameters, P ,Q, c and k, of the scoring function
in Eq. (4), were trained directly instead of the parameters,m, V and
D of the PLDA model in Eq. (2). Let tij ∈ [−1, 1] be the label of
the trial (ωi,ωj), i.e., tij equals 1 if ωi and ωj are from the same
speaker and −1 if they are not from the same speaker. Further, let
θ = vec([P ,Q, c, k]), where vec(·) stacks the columns of a ma-
trix into a column vector. Then θ can be trained discriminatively by
minimizing the total loss

E(θ) =

n∑
i=1

n∑
j=1

l (tij , sij(θ)) +R(θ), (11)

where l(t, s) is a loss function for a trial, n is the number of i-vectors
in the training set and R(θ) is a regularization term. That is, we are
minimizing the sum of the loss for all possible i-vector pairs in the
training set. In this study we will follow [7] and use the logistic
regression loss function given by

l (tij , sij) = log (1 + exp(−tijsij)) . (12)

Then, the gradient of in E(θ) in (11) is given by, ([8]),

∇E(θ) =

∇PE(θ)
∇QE(θ)
∇cE(θ)
∇kE(θ)



=

 2vec(ΩGΩT )
2vec([Ω ◦ (1AG)]ΩT )

2[Ω ◦ (1AG)Ω]1B

1T
BG1B

 . (13)

where 1A is a d×nmatrix of ones and 1B is a n×1 matrix of ones,
Ω = [ω1 . . .ωn], ◦ denotes the element wise multiplication of two
matrices and

Gij =
∂l(tij , sij)

∂si,j
. (14)

Since, in this approach, the score function is optimized directly
without any constraints, the obtained parameters may not preserve
the properties of the PLDA LLR score discussed in Section 2.2. We
will refer to this discriminative training method as unconstrained
discriminative training.

An alternative approach for discriminative PLDA training was
presented in [11]. In that study, a generalization of the PLDA model
was considered in order to deal with multiple enrollment sessions.
In the case of only one enrollment session, the method corresponds
to standard PLDA. In their discriminative training scheme, only the
eigenvalues of the covariance matrices of the PLDA model, or, a
scaling factor of them was trained discriminatively while remain-
ing parameters were obtained from ML training. As long as the
eigenvalues are kept positive, the resulting parameters will preserve
the properties of the PLDA model. But since the orientation of the
eigenvectors are unchanged, the method does not take full advantage
of discriminative training.
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4. CONSTRAINED DISCRIMINATIVE PLDA TRAINING

As described in the previous section, the previous studies on dis-
criminative PLDA training either do not preserve the properties of
the PLDA model or they do not do discriminative training of all its
parameters. In this section we will describe how P and Q can be
constrained to be positive- and negative-(semi)definite in discrimi-
native training of the score function in Eq. (4). Moreover, we will
constrain the rank of P and Q to be lower than d, since, for ML
trained models, this typically performs better than rank equal to d.
We call this training constrained discriminative training.

The matrix P is positive-semidefinite if

P = PAP
T
A , (15)

wherePA is a d×r matrix with real elements. Accordingly, in order
to keep P positive-semidefinite, we train PA instead of P . The
rank of P is equal to r and can therefore be selected by selecting
the number of columns in PA. Based on Eq. (13), the gradient of
Eq. (11) with respect to PA is given by

[∇PAE ] =
[

4vec(ΩGΩTPA)
]
. (16)

The complexity of this calculation is O
(
n2d+ d2(n+ r)

)
com-

pared to O(n2d + d2n) for the unconstrained training [21]. Since
n� r, the additional computational cost is small.

In order to prevent over-fitting, we use L2 regularization towards
the ML model, R(θ) = ρ‖θ − θ̄‖2 where (̄·) refers to the ML
estimate. The regularization term for P is ρ‖PAP

T
A − P̄ ‖2. The

gradient is given by,

[∇PAE ] = 4ρ
[

vec
(

[(PAP
T
A )− P̄ ]PA

) ]
. (17)

In order to keepQ negative-semidefinite, we setQ = −QAQ
T
A

and train QA instead of Q. The gradient for QA is obtained by
a similar modification of Eq. (13) as for PA. Using these gradi-
ents, we then minimize total loss in Eq. (11) with respect to θA =
vec([PA,QA, c, k]) with the L-BFGS algorithm [12].

5. EXPERIMENTS

In this section we experimentally compare ML training, the uncon-
strained discriminative training and our proposed constrained dis-
criminative training.

5.1. Experimental setup

We used NIST SRE 2006 core task as the development set and NIST
SRE 2008 core condition-6 (tel-tel) and NIST SRE 2010, coreext-
coreext condition-5 (tel-tel) as the evaluation sets. We used EER
and the old and new MDC as evaluation metrics. See [13]-[15] for
details. The development set was used to select the regularization
parameter, ρ, that minimized old MDC.

Voice activity detection using spectral subtraction [16] was used
for removing non speech. For features we used 15 PLP coefficients
and log-energy plus their first-order and second-order derivatives.We
applied feature warping [17] before applying VAD. We used gender-
dependent systems. For training the UBM and i-vector extractor, we
used NIST SRE 2004 and 2005, Switchboard II-Phase 1, 2 and 3,
Switchboard Cellular -Part 1 and 2. The dimension of the i-vector,
d, was set to 400. For PLDA training we used the same sets except

Table 1. Male results, MDC refers to old MDC for sre06 and sre08-6
and new MDC for sre10-5.

Set Training method MDC EER
Sre06 (Dev) ML 0.0116 2.24

Unconstrained Discr. 0.0122 2.28
Constrained Discr . 0.0110 2.06

Sre08-6 ML 0.0250 4.87
Discr. Unconstrained 0.0256 4.66
Discr. Constrained 0.0231 4.62

Sre10-5 ML 0.000378 1.96
Unconstrained Discr. 0.000417 2.26
Constrained Discr. 0.000391 1.96

Table 2. Female results, MDC refers to old MDC for sre06 and
sre08-6 and new MDC for sre10-5.

Set Method MDC EER
Sre06 (Dev) ML 0.0181 3.38

Unconstrained Discr. 0.0156 3.16
Constrained Discr. 0.0145 3.09

Sre08-6 ML 0.0284 5.89
Unconstrained Discr. 0.0262 5.63
Constrained Discr. 0.0265 5.56

Sre10-5 ML 0.000483 3.03
Unconstrained Discr. 0.000515 3.05
Constrained Discr. 0.000525 3.08

Switchboard II-Phase 1. The number of i-vectors in the training data
was 12383 for female and 9152 for male.

The i-vectors were whitened, i.e., normalized with the total co-
variance, and length-normalized [6] prior to PLDA training. The
rank of V was set to 250.

ML training was performed with the EM algorithm as described
in [18]. Discriminative training was started from the ML model, us-
ing eigendecomposition to get initial PA andQA. For optimization,
we used the L-BGFS method in [19]. We used its default stopping
criteria and in addition we stopped the training if no change in old
MDC had been observed on the development set for 20 iterations.

5.2. Results

The MDC and EER for male are shown in Table 1. The DET curves
are shown in Figs. 1 and 2. For sre08-6, the constrained discrimi-
native training performs better than both ML and unconstrained dis-
criminative training. For sre10-5, ML training is clearly better than
the unconstrained discriminative training but our constrained dis-
criminative training gives similar results to ML training except for
a small advantage of ML training in the new MDC. As can be seen
in Fig. 2, this advantage is only in the very left of the DET curve.

For female, the differences between the methods were smaller.
The EER and MDC are shown in Table 2. The DET curve for sre08-
6 is given in Fig. 3. Constrained and unconstrained training give
very similar results but ML training is clearly worse except for new
MDC. For sre10-5, all training methods give comparable results.

Overall, there is no clear winner between ML training and the
unconstrained discriminative training proposed in the previous stud-
ies. Constrained discriminative training on the other hand, is always
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Fig. 1. Det curve for Sre08-6, Male
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Fig. 2. Det curve for Sre10-5, Male

better or comparable to the best of the other two methods on all the
data sets evaluated in this study. We also confirmed that the matri-
ces P and Q obtained by the unconstrained discriminative training
indeed did not fulfill the two constraints of discussed in Subsection
2.2. The violation of the directional property may therefore be one
of the causes for the worse performance of the unconstrained dis-
criminative training.

For the female evaluation sets, there were no significant dif-
ference between the constrained and unconstrained discriminative
training. This may partly be explained by the fact the female train-
ing data were larger since, with more training data, there should be
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Fig. 3. Det curve for Sre08-6, Female

less need for constraints.
On an Intel Xeon 5670, the CPU-time was typically 2 to 6 hours

for the unconstrained training depending on the value of ρ. Despite
the slightly higher complexity of the gradient calculation, the train-
ing time was reduced by approximately half for the constrained train-
ing. This is because the optimization converged in fewer iterations.

6. CONCLUSION AND FUTURE WORK

We presented two properties of the PLDA scoring function that
should be preserved in discriminative PLDA training. And then,
we developed a novel constrained discriminative training method
for preserving them. Experimentally, we show that it outperforms
unconstrained discriminative PLDA training.

Future work will include experiments with smaller amounts of
training data. Further, in addition to the constraints presented in this
study, it can be shown that, for example, P +Q should be positive
definite. It would be interesting to evaluate this constraint also. In
this study, we used regularization towards the ML model but other
approaches should be evaluated, including techniques discussed in
[20].

Finally, since the extra flexibility of the unconstrained discrimi-
native training is not helpful, one might ask what kind of extra flex-
ibility could benefit the PLDA model. In [21], it was shown that the
PLDA scoring function can be seen as the second order Taylor ex-
pansion of a general scoring function. Considering higher order Tay-
lor expansions with suitable constraints could be a good approach.
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