
SPEAKER VERIFICATION USING KERNEL-BASED BINARY CLASSIFIERS WITH 
BINARY OPERATION DERIVED FEATURES 

 
Hung-Shin Lee1, 2, Yu Tso3, Yun-Fan Chang3, Hsin-Min Wang2, Shyh-Kang Jeng1 

 
1Department of Electrical Engineering, National Taiwan University, Taiwan 

2Institute of Information Science, Academia Sinica, Taiwan 
3Research Center for Information Technology Innovation, Academia Sinica, Taiwan 

 
ABSTRACT 

 
In this paper, we study the use of two kinds of kernel-based dis-
criminative models, namely support vector machine (SVM) and 
deep neural network (DNN), for speaker verification. We treat the 
verification task as a binary classification problem, in which a pair 
of two utterances, each represented by an i-vector, is assumed to 
belong to either the “within-speaker” group or the “between-
speaker” group. To solve the problem, we employ various binary 
operations to retain the basic relationship between any pair of i-
vectors to form a single vector for training the discriminative mod-
els. This study also investigates the correlation of achievable per-
formances with the number of training pairs and the various com-
binations of basic binary operations, using the SVM and DNN 
binary classifiers. The experiments are conducted on the male por-
tion of the core task in the NIST 2005 Speaker Recognition Evalu-
ation (SRE), and the results are competitive or even better, in terms 
of normalized decision cost function (minDCF) and equal error 
rate (EER), while compared to other non-probabilistic based mod-
els, such as the conventional speaker SVMs and the LDA-based 
cosine distance scoring. 
 

Index Terms— speaker verification, SVM, DNN, i-vector 
 

1. INTRODUCTION 
 
As a key component in speaker recognition tasks, speaker verifica-
tion, which verifies whether the speech utterances pronounced by 
an unknown speaker correspond to the claimed identity or not, has 
become more and more indispensable in many security-related 
applications, such as telephone banking [1] and forensic analysis 
[2]. In general, the design of a conventional speaker verification 
system needs to take two distinct phases into consideration while 
processing the extracted speech features [3, 4]. In the enrollment 
phase, each target speaker to be verified by the system has to pro-
vide some speech samples to train the model for that particular 
speaker either by means of the generative approach that captures 
the empirical probability density function corresponding to the 
acoustic feature vectors or through the discriminative way, seeking 
to minimize the error on a set of true and impostor training samples. 
In the test phase, an individual makes a claim about his/her identity, 
then the system proceeds to authenticate whether that claim is true 
or false through the clamed speaker model. 

Going into detail while facing practical issues in the real world, 
in order to make the speaker-specific models more reliable and 
immune to the problem caused by an inadequate amount of train-
ing data, a universal background model (UBM), such as a Gaussian 
mixture model (GMM) [5, 6] and a hidden Markov model (HMM) 

[7, 8], is often trained in advance for efficiently learning the target 
speaker models by adaptation. In recent years, as the number of 
target speakers is increasing and some discriminative models, such 
as the support vector machine (SVM) [9] and artificial neural net-
work (ANN) [10], become more and more attractive and effective, 
the aforementioned generative models no longer serve as the only 
choice for verification. On the contrary, they are often used as 
tokenizers to represent speech utterances of varying durations by 
fixed-length supervectors, concatenations of multiple vectors [11], 
or the well-known i-vectors [12], where the speaker-dependent 
information of the whole utterance and session/channel compensa-
tion are considered simultaneously. These representations, making 
the way to compare one utterance with another more straightfor-
ward, are effective for most of backend discriminative classifiers. 
For example, many researchers exploited using an SVM to model 
the boundary between the target speaker and the imposter speakers. 
Some of them constructed kernel functions of supervectors based 
on the Kullback-Leibler (KL) divergence [13] or the Bhattacharyya 
-based distance [14] between two GMMs, and some simply har-
nessed the dot-product kernel along with the within class covarian-
ce normalization (WCCN) [15] or linear discriminant analysis 
(LDA) [16] based projection matrices on i-vectors [12, 17]. 

Therefore, the classic structure for speaker verification conveys 
a simple three-point message. First, each target speaker needs to be 
independently and individually modeled, resulting that the whole 
system comprises different models, so that score normalization 
techniques are often necessary before an acceptance or a rejection 
decision threshold is made [18]. Second, in order to train speaker 
models, a set of utterances from cohort speakers needs to be in-
volved to form a set of negative examples [13], even if we cannot 
completely assure whether the examples are all true negative or not. 
Finally, without any utterance-partitioning techniques [17], the 
number of enrollment utterances is usually much less than the size 
of the cohort set, because in most of real applications, verification 
systems cannot expect that the data obtained from the target speak-
er are always sufficient for model training. 

 These characteristics might also cause some problems in prac-
tice. For instance, how to build up a robust discriminative classifier 
in a small-sample-size situation? How to make scores generated by 
different models comparable? And how to effectively maintain the 
consistency of a specific speaker model when its representative 
voice has to be replaced? In this paper, we attempt to address these 
issues by translating the verification problem into a binary (or two-
class) classification problem: given a pair of utterances, in which 
one is from the claimed speaker and the other from an unknown 
speaker, decision should be made regarding which group it falls 
into: the “same speaker” group or the “different speakers” group. 
The holist concept results in only one classifier in the verification 
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system. To our knowledge, the interpretation and the corre-
sponding treatment can be dated back to the work proposed by 
Moghaddam et al. [19] and the afterwards extended version based 
on factor analysis [20, 21] on face recognition (or might be much 
earlier in other fields like information retrieval). In [19], the au-
thors considered pixel-wise difference between probe and gallery 
images and modeled distributions of “within-individual” and “be-
tween-individual” differences in the Bayesian sense. Therefore, for 
two new images, they used the posterior probability that the differ-
ence belonged to each distribution. Along a similar vein in speaker 
verification, Cumani et al. used a suitable dot-product based kernel 
derived from the two-covariance generative model to train a single 
linear SVM in the primal form, which classified a pair of utter-
ances into either “same speaker” or “different speakers” [22, 23]. 
In light of the concept that an i-vector can be decomposed into a 
speaker factor and a Gaussian distributed channel component, they 
extracted the expanded vectorial form from the formulation of the 
speaker detection log-likelihood, shown in [31], to express the 
feature-wise interaction between the i-vector pair. 

Although modeling the relationship between the “within-
speaker” and “between-speaker” groups is conceptually similar to 
the above work, what we propose in the paper still differs in some 
aspects, which can be illustrated with two questions. First, how to 
make a pair of utterances joined into a single input that conforms 
to the backend classifier? We use commutable binary operations in 
a more general way for the purpose to capture the pure relationship 
between two utterances, without regard to any similarity measures 
like the feature difference derived by the division operation in [19] 
and the speaker likelihood considered in [22]. Second, how to 
model the “within-speaker” and “between-speaker” groups? In 
recent research in speaker verification, deep neural network (DNN) 
[27] and its fundamental building block, restricted Boltzmann ma-
chine (RBM), have proven effective for feature representation [32]. 
In this paper, apart from the probabilistic schemes used in [20, 21] 
and the linear SVM, we use the nonlinear SVM and DNN as bi-
nary classifiers for structurally modeling the two groups. 

The remainder of this paper is organized as follows. In Section 
2, we briefly describe the principle of the SVM and its convention-
al usage in speaker verification. Section 3 presents our proposed 
framework, which is divided into two parts: binary operation based 
feature formulation and kernel-based discriminative binary classi-
fication. Finally, experiments, conclusions and future work are 
outlined in Sections 4 and 5, respectively. 
 

2. SVM AND ITS CONVENTIONAL USAGE 
 
Since the utterances vary in duration, the first step for speaker 
verification is to represent each set of feature vectors as a fixed-
length single vector. One of the widely-used approaches is to stack 
the d-dimensional mean vectors of a K-component adapted GMM 
into a Kd-dimensional Gaussian supervector [4, 13], which, by 
considering the channel and session variability, can be further re-
duced into a lower dimensional vector, the well-known i-vector 
[12]. After being scaled and normalized, the supervectors or i-
vectors can be applied as inputs to the SVM. 
 
2.1. Principle of SVM 
 
As illustrated Figure 1, an SVM is a binary classifier that fits a 
separating hyperplane between two groups, labeled as “positive” 
and “negative”, when the data are linearly separable [9]. The opti-
mal hyperplane, represented by the solid black line, is chosen ac-

cording to a maximum margin criterion. That is, the optimal hy-
perplane is chosen to maximize the distance to the nearest data 
points on each side of the plane that we call “margin” and mini-
mizes the chance of causing a misclassification nearby as well. The 
closest data points to the separating hyperplane, which lay on the 
dashed black lines, are known as the support vectors, since remov-
ing them will change the location of the separating hyperplane. 

Moreover, the SVM can reveal its powerful classification abil-
ity especially when the data are not linearly separable by using 
slack variables that allow an example to be in the margin and a 
kernel function that projects the data to a high-dimensional feature 
space where the data become linearly separable. In such a case, the 
problem of margin maximization in the high-dimensional feature 
space equally turns out to be the optimization of a function of the 
support vectors, in which “the kernel trick”, a method of expanding 
up from a linear classifier to a non-linear one in an efficient man-
ner, makes the problem tractable [24].  
 
2.2. Speaker SVMs 
 
The goal of the SVM-based speaker verification is to optimally 
separate the enrollment data (purple circles in Figure 1), i.e., sam-
ples of a target speaker, from those of background or imposter 
speakers (red circles in Figure 1). In the enrollment phase, given 
one or several utterances spoken by speaker i and labeled as “posi-
tive”, along with a set of background data consisting of thousands 
of samples extracted from impostor speakers and labeled as “nega-
tive”, a speaker-specific SVM is then trained using these samples. 
This results in support vector selection and weight (i.e., the contri-
bution of a support vector) determination from the enrollment data 
and background data, which can be used to obtain the verification 
score while an unknown utterance is claimed to be spoken by 
speaker i in the test phase [13].  

Apart from the problem caused by the insufficiency of positive 
data, which might be much more critical in generative models than 
that in discriminative models, we can still see that, when the posi-
tive group contains only one example, as shown in Figure 1, the 
support vector selection is strongly dominated by the nearest nega-
tive examples to the positive examples. 
 

3. OUR PROPOSED METHOD 
 
We propose an alternative way to apply kernel-based classifiers to 
speaker verification. As a member of the typical pattern recogni-
tion techniques, our method also contains two parts: a feature for-
mulation mechanism and a classification model. 

Figure 1. The conventional speaker SVMs. 
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3.1. Feature formulation by binary operations 
 
As mentioned in Section 1, the first step for a classifier to indicate 
whether a pair of samples belongs to some class or not is to take 
this pair as a new sample, which contains some information about 
the relationship between the two samples. Given two vectors 𝒘! 
and 𝒘!, which represent two utterances 𝑢! and 𝑢!, respectively, 
we attempt to find a binary operation 𝐵(𝒘!,𝒘!) that not only ap-
plies to any two d-dimensional vectors 𝒘! = [𝑤!!,… ,𝑤!!]! and 
𝒘! = [𝑤!",… ,𝑤!!]!  but also serves as a map 𝐵:𝑊×𝑊 → 𝑊 , 
where 𝑊 is a nonempty set, such that 𝐵 is defined for every pair of 
elements in 𝑊, and uniquely associates each pair of elements in 𝑊 
[25]. Different from some ensemble-based learning models or 
score fusion techniques, the binary operation based feature repre-
sentation is not a combination of similarity measures or discrimi-
nant scores that are generated from several weak learners or sub-
systems; on the contrary, it serves as an information package that 
contains raw materials that describe the relationship between two 
samples, so that a complex classifier, such as kernel machines, can 
unpack it and take out what is helpful for classification. 

In this paper, we use three kinds of basic binary operations, 
𝒘!⊕ 𝒘!, 𝒘!⊗ 𝒘!, and 𝒘!⊖ 𝒘! , where ⊕, ⊗, and ⊖ denote 
element-wise addition, multiplication, and subtraction, respectively, 
and ∙  denotes the element-wise absolute value function. For ex-
ample, [ 𝑤!! + 𝑤!" ,… , 𝑤!! + 𝑤!! ]! is the result of 𝒘!⊕ 𝒘!. 
Any combinations of the above operations can be simultaneously 
performed to form a higher-dimensional vector by augmentation. 
For instance, with addition and multiplication, the binary opera-
tion-derived vector 𝒃!", b-vector for short, can be expressed by 
𝒘!⊕ 𝒘!

! , 𝒘!⊗ 𝒘!
! !. We can also easily prove that the 

function that maps 𝒘! and 𝒘! to their corresponding b-vector is 
one-to-one (injective) and onto (surjective), that means each pair of 
vectors has its b-vector by all means, and no two distinct b-vectors 
are produced from the same vector pair. Thus, the b-vector strong-
ly guarantees the uniqueness for each vector pair. It is worth point-
ing out that, all of above operations are commutative or order in-
dependent, that is, 𝐵 𝒘!,𝒘! = 𝐵(𝒘!,𝒘!) , and moreover, to 
avoid the situations of arithmetic overflow and divide-by-zero 
errors during implementation, the operation of element-wise divi-
sion is not considered in this paper.  
 
3.2. SVM with b-vectors 
 
The training mechanism for binary discriminative models in the b-
vector based scheme is as follows. Let 𝒃!" = 𝐵 𝒘! ,𝒘!  be the b-
vector related to the pair of 𝒘! and 𝒘!. The positive and negative 

examples, 𝑃 and 𝑁, for training the discriminative model can be 
collected through the labeled portion in the background data. For 
each pair of vectors, 𝒃!" ⊆ 𝑃  if 𝒘!  and 𝒘!  belong to the same 
speaker; in the same way, 𝒃!" ⊆ 𝑁 if 𝒘! and 𝒘! are generated from 
different speakers. Figure 2 shows the structure of the b-vector 
based SVM. Given the SVM trained according to the similar prin-
ciple described in Section 2.1, for each trial, the corresponding 
enrollment utterance of the target speaker is first combined with 
the test utterance to form a b-vector. Then, the score output by the 
decision function of the SVM, signifying the degree to which the 
b-vector belongs to the “with-speaker” group, is obtained by pro-
cessing the b-vector into the SVM. 
      Note that if the background data contain N speakers, each 
providing at least M conversations, then the total number of back-
ground utterances is at least MN, which is also the size of negative 
samples for training each speaker-specific SVM in Figure 1. How-
ever in the SVM shown in Figure 2, the numbers of positive and 
negative examples amount to at most 𝑁×𝐶!! and 𝐶!!×𝑀! 2, re-
spectively, where 𝐶!!  denotes the combinatorial number or the 
binomial coefficient [26]. We can easily see that the number of 
positives in our proposed SVM is much larger than any of those in 
the conventional speaker SVMs in Figure 1, and that the data im-
balance problem can be well solved with an appropriate choice of 
M or through a mechanism of random selection. 
 
3.3. DNN with b-vectors 
 
The second discriminative classifier designed for b-vectors is the 
recent popular deep neural network (DNN) [27]. The DNN is a 
feed-forward artificial neural network model, which consists of 
multiple layers of neurons. The neurons in each layer are fully 
connected to the neurons in the next layer. As shown in Figure 3, 
the DNN maps the input b-vector of an utterance pair into the pos-
terior probabilities of positive and negative groups, and the verifi-
cation score is obtained by the posterior probability output from 
the positive node that embodies the “within-speaker” group. 

With a set of training data, the parameters in the DNN are first 
initialized by restricted Boltzmann machines (RBMs) in a layer-
by-layer manner, followed by a logistic layer with Gaussian kernel 
placed on top of it, and then the back-propagation algorithm fine-
tunes those parameters. When the DNN is trained on a small train-
ing set, it typically performs poorly on the test data. This “over-
fitting” is greatly reduced by randomly “dropping out” some hid-
den units in the feed-forward phase of back-propagation because 
each neuron is forced to learn effectively due to the “unreliability” 

Figure 2. The b-vector based SVM. 

Figure 3. The b-vector based DNN. 

1681



of other neurons. With the “dropout” technique, even though the 
test data are mismatched to the training data or corrupted by noises, 
the DNN can still provide very effective performance. The random 
“dropout” technique has been verified to give big improvements on 
many benchmark tasks and set new records for speech and object 
recognition [28]. 
 

4. EXPERIMENTS 
 
All the experiments in this paper were carried out on the male por-
tion of the core condition (1conv4w-1conv4w) in NIST SRE05, 
where each target speaker provided only one 5-min conversational 
utterance for enrollment [29]. The evaluation task contains 1,222 
true trials and 12,367 false trials. We used equal error rate (EER) 
and normalized minimum decision cost function (minDCF) as 
acknowledged metrics for evaluation. With the frame length of 25 
ms and the frame shift of 10 ms, speech parameters were repre-
sented by a 60-dimensional feature vector of Mel-frequency 
cepstral coefficients (MFCC) with first and second derivatives 
appended using a 2-frame window, followed by data distribution- 
based feature warping with a 300-frame window in order to com-
pensate for the effects of environmental mismatch [30]. 

A gender-dependent UBM consisting of 2,048 Gaussian com-
ponents with diagonal covariance matrices and an i-vector extrac-
tor with dimensionality 300 were trained using data drawn from 
SRE04. Each speech utterance is finally tokenized by a length-
normalized i-vector [33]. In the conventional speaker SVM system, 
we take 274 male models in SRE05 to carry out T-normalization 
[18] and 1,875 male SVM background impostors in SRE04 to train 
the SVM in the dual form with the radial basis function (RBF) 
kernel. The 1,875 male utterances, each of which is labeled with 
one of the 122 male speakers in SRE04, are used for training our 
proposed b-vector based kernel machines and generating a 
300×120 LDA projection matrix that reduces the dimensionality of 
each i-vector from 300 to 120. 

Table 1 shows the size of P and N, which denote the numbers 
of i-vector pairs in the “within-speaker” and “between-speakers” 
groups, respectively, in the male portion of SRE04. Since the total 
number of pairs in the “between-speakers” group, drawn from 122 
speakers, are over 1,740,000 such that the training of the SVM 
becomes intractable, since the derivation of a Gram matrix would 
be clearly unfeasible. Furthermore, unlike the dot-product kernel, 
the RBF kernel in the SVM does not theoretically allow us to 
transform the SVM solver from dual forms to primal forms, and if 
so, the SVM might lose its discriminatory ability when the data are 

non-linearly separable [22, 23]. Thus, we tried to reduce the size of 
the training data by randomly choosing R pairs of i-vectors from 
each pair of speakers not only to reduce the size of N, but also to 
make the training data more balanced. In Table 2, we can see that 
in the SVM system, the best EER is achieved when the b-vectors 
are formed through binary operations of ⊕ and ⊗, and R = 2, 
where the training data are most balanced in all situations. We can 
also see that the results in the combination of ⊕, ⊗, and ⊖ are 
worse than those in the combination of ⊕, ⊗. This implies that the 
binary operation ⊖ in the framework might produce redundant 
features although it is a basic operation for similarity measures. 

Table 3 presents EERs for the DNN system based on b-vectors 
that are formed by the operations of ⊕ and ⊗. The best result 
occurs when R = 4, which means that the DNN system is less vul-
nerable to the data imbalance situation while compared to the SVM 
system. From Table 4, we can see that in terms of EER, our pro-
posed kernel-based discriminative models outperform the state-of-
the-art speaker SVMs and the LDA-based cosine scoring methods. 
Next by comparing minDCF scores in Table 4, we can notice that 
both b-vector SVM and b-vector DNN outperform LDA with co-
sine scoring, whereas slightly underperform speaker SVMs. As is 
shown in [29], the minDCF, defined by NIST SRE05, is obtained 
by allowing the evaluator, who has access to the true class labels, 
to choose an optimal threshold at the operating point that inclines 
to penalizing the false acceptance (type-II error) more than the 
false rejection (type-I error). Therefore, it is reasonable that speak-
er SVMs, where the much fewer enrollment data participate in the 
model training with the result that much more impostor support 
vectors are produced, can achieve lower minDCF than b-vector 
SVM and b-vector DNN. However, please be noted that, it is not 
required to prepare multiple speaker-specific models for both b-
vector SVM and b-vector DNN, which considerably reduces the 
computational complexity.  
 

5. CONCLUSIONS AND FUTURE WORK 
 
This paper has presented a non-probabilistic scheme to directly 
solve the problem of speaker verification without building an indi-
vidual model for each target speaker.  Based on the idea of binary 
operations, each pair of utterances can be represented by a single 
vector that is suitable for any applications involving the compari-
son between two examples. The integration of such feature vectors 
and discriminative classifiers has shown to perform well on the 
standard NIST SRE corpus. In our future work, model adaptation 
with enrollment data and involvement of feature correlation for 
formulating b-vectors will be considered. Additionally, some prob-
abilistic approaches, such as PLDA and its modifications [34], give 
us an insight that careful modeling of the measurement noise in our 
proposed methods might be beneficial to verification performance. 

R 2 3 4 5 6 
P 15,109 
N 14,762 22,143 29,524 36,905 44,286 

Methods EER (%) minDCF 
LDA with cosine scoring 12.36 0.71 
speaker SVMs 10.07 0.38 
b-vector SVM ( R = 2, ⊕, ⊗) 9.57 0.43 
b-vector DNN ( R = 4, ⊕, ⊗) 9.33 0.48 Operations R = 2 R = 3 R = 4 R = 5 R = 6 

⊕, ⊗ 9.57 9.74 9.99 9.99 9.99 
⊕, ⊖ 10.31 10.25 10.31 10.23 10.22 
⊗, ⊖ 10.64 10.80 10.80 10.72 10.65 

⊕, ⊗, ⊖ 10.48 10.30 10.31 10.29 10.23 

Operations R = 2 R = 3 R = 4 R = 5 R = 6 
⊕, ⊗ 9.81 9.72 9.33 9.57 9.50 

Table 1. Numbers of pairs in the “within-speaker” (P) and “be-
tween-speaker” (N) groups for various settings of R in the male 
portion of SRE04. 

Table 2. EER (%) of the b-vector based SVM system for various 
settings of R while using four kinds of combinations of binary 
operations on SRE05. 

Table 3. EER (%) of the b-vector based DNN system for various 
settings of R while using binary operations ⊕ and ⊗ on SRE05. 

Table 4. EER (%) and minDCF for various approaches on SRE05. 
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