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ABSTRACT

This paper introduces a novel metric for image difference prediction,
capable of handling color data. The proposed metric, namely, color
difference index based on circular hue, is a full-reference based
scheme, which independently processes achromatic and chromatic
differences of two input color images. Within the framework, chro-
matic information is analyzed using two perceptual attributes, hue
and chroma information, simulating human visual system mecha-
nism. Unlike conventional approaches where the periodic nature
of hue is disregarded, we propose to estimate hue difference by
adopting theory of circular statistics. Performance of the proposed
solution is validated using benchmark image quality assessment
databases. Experimental results indicate the effectiveness of the
proposed metric against a wide range of distortions, especially
on chromatic distortions, making it better suited for color gamut
mapping applications.

Index Terms— color image, perceptual image difference, hue,
angular data, circular statistics, color gamut mapping

1. INTRODUCTION

Throughout the last few decades, we have witnessed rapid prolifer-
ation of color imaging devices and color contents in a wide variety
of multimedia communication systems, replacing their conventional
grayscale counterparts. With such transition, demand for a com-
putational metric, capable of estimating perceived color difference
in visual data has increased, since it can replace cumbersome and
time-consuming subjective assessment in real-time automated sys-
tems. For example, image difference metric can be exploited in color
gamut mapping modules [1] for consistent color reproduction over
different platforms. Since the main purpose of gamut mapping is to
adjust color data according to the gamut of the target system with-
out introducing noticeable difference, such objective measure can be
effectively used in optimization of gamut mapping parameters [2].

Numerous techniques have been proposed to predict perceived
difference in visual data [3, 4, 5]. Although the simplest computa-
tional tool to analyze image difference is the Mean Squared Error
(MSE), it has been criticized for its pool performance from a per-
ceptual point of view. Instead, a full-reference (FR) metric which
attempts to incorporate structural information in image comparison,
the Structural Similarity (SSIM) index [6] has received consider-
able attention from research community due to its high correlation
with perceived image similarity and simple mathematical formu-
lation. Under an assumption that human visual system (HVS) is
highly sensitive to structural distortion, SSIM estimates perceived
difference between two images by examining three complementary
components, luminance, contrast, and structure in grayscale domain.

Several extensions have been introduced from the baseline SSIM,
such as the multiscale SSIM (MSSIM) [7], the image gradient SSIM
[8], as well as the texture feature SSIM [9]. However, aforemen-
tioned variants are less suitable to handle color images exhibiting
chromatic deviation, since they disregard contribution of chromatic
information in perceived image difference. The most fundamental
tools to measure difference of two visual stimuli are CIE color dif-
ference equations, e.g. CIEDE2000 [10]. Although they are useful
for predicting perceived difference of two simple color patches, there
is no guarantee that they work well with complex real-world image
data. In principle, SSIM can be simply applied to individual RGB
channels and each channel score can be combined to quantify over-
all difference between two color images. Since such direct extension
is suboptimal in predicting perceived difference, more sophisticated
approaches exploiting various properties of color perception have
been proposed [11, 12, 13]. For instance, Toet and Lucassen [11]
applied SSIM to a perceptually decorrelated lαβ space to simulate
the retinal image processing of HVS. Recently, Lissner et al. [13]
proposed the image difference measure (IDM), which compares two
images in perceptually uniform space, namely LAB2000HL [14] us-
ing three perceptual attributes, hue, chroma, and lightness compo-
nents under SSIM framework.

In this paper, we introduce a novel image difference metric,
namely color difference index based on circular hue (CDICH),which
independently processes achromatic and chromatic components of
image data, adopting the retinal process of HVS. Chromatic com-
ponent is further characterized by two perceptual attributes, hue and
chroma, where hue corresponds to an angular measure around the
achromatic axis, and chroma corresponds to the distance from the
achromatic axis. Especially, hue direction comparison term based on
the theory of circular statistics [15, 16], a measure that quantifies the
difference between local hue information between two color data, is
introduced as the primary feature in the proposed scheme. This term
takes into account the periodic nature of angular hue, which is often
neglected in general image processing applications.

The rest of this paper is organized as follows. Section 2 presents
background information related to circular statistics. Section 3
presents the proposed metric in detail. Experimental results are
reported in Section 4 and conclusion is drawn in Section 5.

2. CIRCULAR DATA AND MEAN DIRECTION

Although we generally deal with data whose domain lie in a straight
line during most of image analysis, there exists certain applications
that require us to process angular data, such as hue in cylindrical
color systems. In this section, we provide some basic definitions
of circular statistics used in our proposed metric, that allow us to
process such angular data.
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Let’s assume that we have N angular observations θ1, . . . , θN ,
where θi ∈ [0, 360◦). Initially, sample data are transformed to
unit vectors in two-dimensional plane, represented by sample points
Pi = [cos θi, sin θi]

T on a unit circle as shown in Fig 1.

Fig. 1. Sample mean direction θ of five angular data, P1, . . . , P5,
represented on a unit circle

Then we obtain the resultant vector of N unit vectors from the
origin by summing them component wise:

R =
(∑
i=1

cos θi,
∑
i=1

sin θi
)
=
(
CN , SN

)
(1)

The sample mean direction θ, the average angle of angular samples,
can be computed from the direction of resultant vector ~R as follows:

θ = arctan(CN/SN ) (2)

3. PROPOSED COLOR DIFFERENCE METRIC

It is well known that human eye processes the retinal image in
three color channels, one achromatic and two chromatic channels
(opponent color) [17]. Under an assumption that achromatic and
chromatic components contribute independently to overall perceived
color appearance, our framework translate input color signal to the
domain where both components are easily accessible. Then, achro-
matic and chromatic components are compared independently to
generate difference maps (i.e. matrices composed of local difference
scores) of individual channels. Afterwards, the map is translated
into a single score by applying spatial pooling to each comparison
map, followed by component pooling. It should be noted that the
proposed scheme relies on simple low-level visual features of color
images rather than complex semantics, and thus, it is computation-
ally efficient and widely applicable for general color images.

The inputs to the system are two RGB color images, X and Y
(X,Y : R2 → R3), which are assumed to be consistent in spatial
resolution and bit depth, as well as properly aligned. The output of
the systemCDICH(X,Y) is a measure of color difference between
two images (CDICH(X,Y) ≥ 0 ,where 0 indicates that both are
identical images). The block diagram is illustrated in Fig 2.

3.1. Color Space Conversion

Despite its dominant usage in image representation, RGB domain
is not suitable to perform perceptual color analysis due to its lack
of correlation with visual perception. Hence, RGB image should be
transformed to color space where convenient extraction of percep-
tual color attributes, e.g. hue, chroma, and lightness [18], is allowed.
Aforementioned attributes are easily accessible from perceptual
color systems, such as HSV [19], HSL, CIELAB, and S-CIELAB,

Fig. 2. Illustration of theCDICH index computation for given color
images X and Y (Terminologies are explained in section 3.2)

rather than rectangular system. Among perceptual attributes, two
chromatic ones, hue and chroma characterize the color vector by
means of vector direction angle and vector magnitude in a polar
coordinate. The main properties of each component are as follows:

• Hue : an attribute related to dominant wavelength of color signal,
and represented by angle, i.e. H ∈ [0, 360◦), in the chromatic
plane around the achromatic axis (i.e. lightness L∗ axis). Circular
processing is required to handle hue data due to periodicity.

• Chroma : an attribute related to relative colorfulness of the color,
which is represented by its magnitude of projected color vector
onto chromatic plane.

These two components play an important role to quantify the chro-
matic deviation in two image data, which occurs very often in color
gamut mapping algorithms (GMA). For example, Zolliker’s GMA
[20] attempts to generate a gamut mapped image while preserving
original local contrast, lightness, and saturation of the original im-
age, which often lead to shifts in hue components.

In the proposed scheme, we make use of S-CIELAB [21], a
spatial extension of CIELAB, for following reasons: i) it is a uni-
form color coordinate designed for color difference analysis, where
its values describe the perceived differences between stimuli, ii) S-
CIELAB exploits a spatial pre-processor to approximate the con-
trast sensitivity function (CSF) of HVS, allowing for normalization
of visual information based on viewing distance. In S-CIELAB,
color signal is represented with three terms, lightness L∗, redness-
greenness a∗, and blueness-yellowness b∗. Hue H and chroma C,
can be derived from two chromaticity terms a∗ and b∗ as follows:

H = arctan(b∗/a∗), C =
√
a∗2 + b∗2 (3)

3.2. Component Specific Difference Map Estimation

The proposed framework compares chromatic and achromatic com-
ponents of given input images independently. Since different image
regions may undergo different types of distortion, we initially mea-
sure perceived difference within local regions. In this section, we
develop several comparison terms to measure perceived difference
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between two corresponding local patches of input images, x and
y. Here, we assume that each local patch contains N pixels, i.e.
x = {xi|i = 1, . . . , N}, y = {yi|i = 1, . . . , N}.

To quantify hue difference between x and y, we introduce hue
direction comparison term H(x,y) : RN × RN → R, given by:

H(x,y) =
2θx,H · θy,H +KH

θ
2
x,H + θ

2
y,H +KH

(4)

where θx,H and θy,H are the circular mean of hue values (refer to
(2)) for the central pixel of image patches x and y, andKH is a small
positive constant which prevents the denominator being zero (Note
that suggested values for KH vary depending on the dynamic range
of hue values. We use KH = (360 · 0.01)2 for hue represented in
degree). This term essentially evaluates how close the average hue
value both local patches have, which is an important perceptual cue
for chromatic distortion. As explained previously, it is important to
use circular mean instead of conventional arithmetic mean for ap-
propriate treatment of angular data. H(x,y) is quantified between
[0, 1] where 1 indicates equivalence.

Similarly, chroma comparison term C(x,y) : RN × RN → R
is defined as:

C(x,y) =
2µx,C · µy,C +KC

µ2
x,C + µ2

y,C +KC
(5)

where µx,C and µy,C are the arithmatic mean chroma values for the
central pixel of image patches x and y, respectively, and KC is a
positive constant for numerical stability.

For comparison of achromatic component, we directly adopt the
original SSIM metric [6] on lightness channels due to its reasonable
performance in predicting perceived difference and computational
efficiency. In other words, three achromatic comparison maps are
generated; each represents mean luminance distortion, contrast dis-
tortion, and loss of linear correlation as follows:

AL(x,y) =
2µx,Lµy,L +KL1

µ2
x,L + µ2

y,L +KL1

AC(x,y) =
2σx,Lσy,L +KL2

σ2
x,L + σ2

y,L +KL2

AS(x,y) =
σxy,L +KL3

σx,Lσy,L +KL3

(6)

where σx,L, σy,L and σxy,L denote the local standard deviations and
cross correlation between lightness channels of two corresponding
patches;KL1,KL2, andKL3 are small constants. Here, we set them
as KL1 = (100 · 0.01)2, KL2 = (100 · 0.03)2, and KL3 = KL2/2,
adopting the recommendation from [7].

3.3. Difference Score Pooling

In order to derive a single numerical score that represents overall per-
ceived difference, we need to combine individual local measurement
from previously obtained five maps. In the proposed framework,
we initially perform a spatial pooling of each comparison maps, fol-
lowed by a component pooling of each channel score into final value.
This pooling sequence is inherited from [13], since it yields better
prediction performance than the pooling sequence in reverse order,
i.e. component pooling followed by spatial pooling.

For instance, hue direction map is converted into hue direction
similarity score,H(X,Y) : Rh×w×Rh×w → R (h andw indicates

the height and width of input images) given by:

H(X,Y) =
1

h× w

h∑
i=1

w∑
j=1

H(xi,j ,yi,j) (7)

where xi,j and yi,j denote local image patches of two image X,
Y, centered at pixel location (i, j). Although we assumed that ev-
ery region is equally significant here, a spatially varying weighting
scheme [22, 23] based on visual saliency is also applicable. In simi-
lar manner, scores for other comparison maps can be computed.

From the component specific scores, we can evaluate two scores
representing the degree of similarity in chromatic and achromatic
components, namely chromatic similarity and achromatic similarity
scores given by:

SC(X,Y) = H(X,Y) · C(X,Y)

SA(X,Y) = AL(X,Y) ·AC(X,Y) ·AS(X,Y)
(8)

Finally, the CDICH can be obtained by incorporating the chro-
matic and achromatic similarity scores as follows:

CDICH(X,Y) = 1− [SA(X,Y)]αA · [SC(X,Y)]αC (9)

where nonnegative parameters αA and αC adjusts the significance
of achromatic and chromatic components in overall difference. We
set αA = αC = 1 in this paper for simplicity. It should be noted
that both parameters can be adjusted depending on target applica-
tion. We may set αA > αC as HVS is generally more sensitive to
achromatic distortion (e.g. chrominance component subsampling in
image compression standard), but in color gamut mapping scenario,
increased significance of chromatic term would be more beneficial).

4. EXPERIMENTAL RESULTS

In order to evaluate whether the proposed metric is statistically
consistent with human visual perception, Tampere Image Database
(TID2013) [24] is used, which consists of 3000 distorted images ob-
tained from 25 original images (containing 24 natural images from
the Kodak database, and one artificially generated image) with 24
types of distortions over 5 distortion levels. Each image in TID2013
DB is acquired in 8-bit RGB with 512x384 resolution, formatted
in BMP. This database is chosen since: i) it is widely used DB for
perceptual image comparison research covering a wide range of
distortions from chromatic to more generic ones, ii) it is annotated
with mean opinion score (MOS), facilitating convenient benchmark
of the proposed scheme with other algorithms.

To facilitate systematic evaluation of the framework, following
experiments are conducted: i) evaluation of the proposed metric on
sample images exhibiting chromatic distortions, ii) evaluation on
sample images exhibiting generic distortions. Hence, TID2013 DB
is divided into two subsets, the color subset exhibiting chromatic
distortion (750 images containing JPEG compression distortion,
color saturation adjustment, color quantization with dither, chro-
matic aberrations, and so forth; distortion type 2,7,10,18,22,23 in
TID2013) and the non-color subset containing the rest of distorted
images in TID2013. Validation is performed by comparing dif-
ference prediction results with provided subjective groundtruth.
Two commonly used evaluation criteria are employed including
Spearman’s rank-order correlation coefficient (SCC) and Kendall’s
rank-order correlation coefficient (KCC). Both measures only take
into consideration the rank of the score and neglect the relative dis-
tance between scores. Note that a better metric has a higher SCC
and KCC values (1 indicates the perfect prediction).
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TID2013 Color Set TID2013 Non-color Set

Block
size

CIELAB S-CIELAB HSV CIELAB S-CIELAB HSV

SCC KCC SCC KCC SCC KCC SCC KCC SCC KCC SCC KCC

3x3 0.735 0.534 0.875 0.676 0.669 0.471 0.505 0.352 0.739 0.555 0.422 0.289
7x7 0.761 0.557 0.864 0.660 0.735 0.527 0.568 0.404 0.735 0.546 0.494 0.342
11x11 0.777 0.571 0.870 0.668 0.747 0.538 0.599 0.429 0.745 0.558 0.509 0.353

Table 1. Performance of the CDICH metric on color and non-color subsets of TID2013 DB using various color systems and local patch sizes

Table 1 compares SCC and KCC performances of our proposed
metric using three commonly used color representations (all of them
allows for access to hue), along with varying local patch sizes. Since
exact viewing condition for TID2013 DB is not provided, we sim-
ply assumed a visual angle of 25 cycles per degree for configura-
tion of S-CIELAB (roughly simulating viewing distance of 20 inches
from a monitor, which is capable of displaying 72 pixels-per-inch).
Superior performance of S-CIELAB against CIELAB implies that
the viewing distance normalization does enhance prediction perfor-
mance of the metric. In addition, normalization effectively mini-
mizes the dependence of local patch size on the performance as
S-CIELAB yields relatively consistent performance across differ-
ent patch sizes. HSV system, a close approximation of CIELAB,
yields suboptimal performance and thus, it is not recommended for
perceptual difference analysis unless low-complexity alternative is
required. Hence, it justifies the use of S-CIELAB in our proposed
metric.

Benchmark
Metric

TID2013 Color set TID2013 Non-color set

SCC KCC SCC KCC

SSIM [6] 0.506 0.382 0.669 0.486
MSSIM [7] 0.566 0.456 0.853 0.659
PSNRc 0.734 0.536 0.671 0.482
FSIMc [12] 0.775 0.593 0.874 0.691
IDM [13] 0.852 0.650 0.766 0.568
CDICH 0.870 0.668 0.745 0.558

Table 2. Performance comparison for image difference measures on
two subsets of TID2013 DB (11x11 window is selected for CDICH

due to its overall reliable performance across both subsets)

In order to provide overall comparative performance of the pro-
posed scheme against other existing metrics, Table 2 demonstrates
KCC and SCC results over two subsets of TID2013. All benchmark
metrics except basic SSIM [6] and MSSIM [7], make use of color in-
formation in different color space and processing sequence. FSIMc

[12] estimates chromatic difference using I,Q components of YIQ
color space and further employs low-level features, namely, phase
congruency (PC) and gradient magnitude (GM), to predict overall
perceived difference. It is included in comparison due to its state-of-
the-art performance in perceptual image analysis [4, 24]. Result in
Table 2 shows that the proposed metric outperforms all other meth-
ods on color set of TID2013 DB, demonstrating its superior per-
formance in estimating perceived difference caused by deviation in
chromaticity. The proposed metric performs less effective than some

metrics on non-color set of TID2013. It is attributed for additional
complex operations that other metrics rely on, e.g. the weighted
spatial pooling strategy in FSIMc, and the multiscale extraction of
comparison maps in MSSIM. Therefore, there is still room for im-
provement by incorporating similar advanced strategies.

The proposed FR metric would be useful for automatic calibra-
tion of color gamut mapping systems for two reasons: i) full resolu-
tion of both color images to be compare are available from users, ii)
chromatic difference between both signals is more significant than
conventional achromatic difference (Fig 3 demonstrates an exam-
ple of significant hue and chroma deviations occurred during gamut
mapping process)

Fig. 3. Chromatic difference maps generated from the proposed met-
ric by comparing the sample image from [25] and the adjusted image
using Zolliker’s GMA [20] (lighter pixels indicate highly different
regions, while darker pixels indicate similar regions)

5. CONCLUSION

In this paper, we have introduced a novel computational metric to
predict perceived image difference between two color images. To
achieve good correlation between subjective assessment score and
the proposed metric, we makes use of complementary information
from three perceptual attributes, hue, chroma, and lightness. Espe-
cially, hue signal, representing the dominant wavelength of the color
signal, is processed using circular statistics to ensure the periodic-
ity of angular data is properly taken into consideration. Experimen-
tal result demonstrates that the proposed metric accurately predicts
perceived difference in image data exhibiting chromatic distortion,
making it suitable for color gamut mapping applications.
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