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ABSTRACT

This paper describes a general framework of speaker recognition
on summed-channel condition for both enrolling and test data. We
present several methods for clustering the target speaker who is
involved in multiple summed-channel enrolling excerpts. In our
approach, each excerpt is segmented separately by a speaker di-
arization system as the first stage. Then segments belonging to the
same speaker are clustered to train the target speaker model, and
speaker verification is applied finally. We propose several effec-
tive objective functions to measure the purity of clustered segments
in multi-session enrollment. Different confidence measures for
summed-channel scoring are also presented. We report experimen-
tal results on female part in the NIST 2008 speaker recognition
evaluation data, which show that our approach applied on summed-
channel condition loses only 1% of the performance measured by
equal error rates (EER) compared to the two-channel condition.

Index Terms— speaker recognition, summed-channel, speaker
clustering, multi-session

1. INTRODUCTION

Speaker recognition on summed-channel speech data is an impor-
tant task in practice. It can be applied to the records of two speaker
scenarios such as interviews and telephone conversations, as the two-
channel recording is not always available in those application scenar-
ios. The summed-channel speaker recognition has been one of the
evaluation tasks in the NIST speaker recognition evaluation (SRE) s-
ince 2005. In such a task, there are multiple excerpts from telephone
conversations for each target speaker enrollment (also addressed as
multi-session enrollment). Each enrolling excerpt includes both the
target speaker and a non-target speaker. The non-target speakers are
assumed to be distinct between multiple excerpts. The test excerpt
from summed-channel telephone conversation includes either a tar-
get speaker and a non-target speaker or two non-target speakers.

There are two differences between summed-channel condition
and two-channel condition, which contains only one speaker in each
enrolling and test excerpt. One is to distinguish the voice of the in-
tended target speaker from multiple enrolling excerpts, which is the
main challenge in the task, and the other is the confidence measure
adjustment to adapt the summed-channel condition in test phase. We
are interested in addressing the above issues in this paper especially
the former.

The general framework of the speaker recognition system on
summed-channel condition we present is illustrated in Figure 1.
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Fig. 1. General framework of the speaker recognition system on
summed-channel condition

Compared with the previous reported systems [1, 2, 3] for two-
channel speaker recognition, the summed-channel speaker recogni-
tion system contains two other phases: speaker diarization and target
speaker clustering. The score calculation phase is also modified.

The paper is organized as follows. In Section 2, we give an
overview of speaker diarization as the first stage of the system. The
target speaker clustering approachs are presented in Section 3. The
confidence measure in test stage is described in Section 4. Section 5
describes experimental results and discussions. Finally, we give the
conclusion and discussions on relation to prior work in Section 6.

2. SINGLE-SESSION SPEAKER DIARIZATION

As the first stage of the whole recognition system, speaker diariza-
tion affects the performance of following stages greatly. P. Kenny
presented variational Bayes based factor analysis for speaker diariza-
tion in [4, 5], which achieved significant performance improvement
compared with previous works. Although eigenchannels are ineffec-
tive in this work, channel effects are usually found helpful in speaker
diarization system because it seems to distinguish two conversation
sides. So we extend this work to total variability space which poten-
tially contains the speaker and channel variabilities simultaneously.
The speaker diarization system based on variational Bayes consists
of four phases: speech activity detection, speech segmentation, vari-
ational posterior calculation and Viterbi re-segmentation.

As for variational Bayes approach, we use one second uniform
segmentation to begin with which assumes just one speaker in each
segment. Baum-Welch statistics for each segment are accumulated
previously. After that, the segment and speaker posteriors are updat-
ed alternately until convergence. On convergence, we assign each
segment to the speaker which provides the maximal segment poste-
rior (see [6] for more details).

Finally, Viterbi re-segmentation is applied to correct the crude
initial segmentation of the data.
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3. TARGET SPEAKER CLUSTERING

As the NIST SRE described, a collection of enrolling excerpts for
each target speaker are given on summed-channel training condition,
denoted by {O1, . . . ,OR}. Here R ≥ 2, otherwise we could not
identify the target speaker with only one summed-channel excerpt.

After processed by the speaker diarization system described in
Section 2, each excerpt is separated into two segments {Or(i)|1 ≤
r ≤ R, i ∈ {0, 1}}. We tend to find the target speaker segments via
different combinations of the 2R speech segments. There is only one
correct combination among the 2R possible combinations without
consideration of speaker diarization errors. Hence the problem turns
into how to find a binary sequence i = (i1, i2, . . . , iR) to maximize
the objective function

arg max
i
F(O1(i1), . . . ,OR(iR)) (1)

F(i) is used as shorthand for the objective function in (1) in the
remainder of this paper.

As speaker recognition technologies are dominated by the so-
called iVector1 representation of speech utterance in recent years [2],
we apply a function f , called the iVector extractor, to every input
Or(i), so that wr(i) = f(Or(i)) is the associated iVector. On
this basis, we present two iVector-based criterions to measure the
confidences of different combinations i.

3.1. Cosine distance criterion

Cosine distance, i.e., the angle between two iVectors, is an effective
criterion used in speaker verification systems to represent the simi-
larity of two speakers [2]. We use the cosine distance accumulation
of multiple trials in i to measure the similarity of multiple speakers,
written as

Fcos(i) =
∑
j

∑
k 6=j

wT
j (ij)wk(ik)

‖wT
j (ij)‖‖wk(ik)‖

(2)

where the iVector w is projected onto a Linear Discriminative Anal-
ysis (LDA) basis.

3.2. A probability perspective

Heavy-tailed probabilistic LDA (PLDA) performed on iVectors
yields state-of-the-art speaker verification results [3], which inspires
us to describe the objective function from a probability perspective.
In general, given R iVectors {w1(i1), . . . ,wR(iR)} and a PLDA
modelM, the log likelihood of those iVectors belonging to the same
speaker is

Flike(i) = L(i1, . . . , iR|M) (3)
the definition of log likelihood L is presented in Section 4 of [3].

While (3) contains only the likelihood of R clustered segments,
there are residual information about the other R segments which
should belong to R different non-target speakers as the NIST SRE
described. So we modify (3) as follows

Flike(i) = L(i1, . . . , iR|M) + L(j1|M) + · · ·+ L(jR|M) (4)

where ir ⊕ jr = 1, 1 ≤ r ≤ R,⊕ is the exclusive OR operator.
Given the definition of likelihood, we can also describe the ob-

jective function from the viewpoint of posterior probability. The
likelihood of the R speech segments in a combination i belonging to
s speakers is written as p(i|s).

1A vector of fixed dimension which contains most of the relevant infor-
mation about the speaker identity.

• s = 1, i is the unique correct combination,

log p(i|s = 1) = L(i|M)

• s = 2, there are R kinds of combinations in total, using the
sum role of probability, we obtain

log p(i|s = 2)

= log
∑
r

p(i1, . . ., ir−1, ir+1, . . ., iR|s = 1)p(ir|s = 1)

• . . .

• s = R, the speakers of R segments in i differ from one an-
other ,

log p(i|s = R) = log
∏
r

p(ir|s = 1) =
∑
r

L(ir|s = 1)

Then we consider the prior p(s = k) of those cases.

• k = 1, the unique correct combination is selected in 2R can-
didate combinations, p(s = 1) = 1/2R

• 1 < k < R, the selected combination contains k speakers,

p(s = k) =
1

2R

(
R

k − 1

)
=

R(R− 1) . . . (R− k + 2)

2R(k − 1) . . . 1

• k = R, the selected combination contains R non-target s-
peakers or R− 1 non-target speakers and the target speaker,

p(s = R) =
(R+ 1)

2R

Hence we can derive the posterior probability of a given combination
containing k speakers using Bayes theorem [7]

p(s = k|i) = p(i|s = k)p(s = k)∑
j p(i|s = j)p(s = j)

(5)

Define
Fpost(i) = p(s = 1|i) (6)

in which the i maximizing F(i) is the combination that has the max
posterior probability of containing only one speaker among all can-
didate combinations. Similar to (4), we modify (6) as follows

Fpost(i) = p(s = 1|i)× p(s = R|j), ir ⊕ jr = 1 (7)

4. SUMMED-CHANNEL SCORING

After speaker diarization and target speaker clustering, we obtain
speech segments of the target speaker. Speaker modeling techniques
for two-channel speaker recognition can be used for enrollment. But
in the summed-channel testing stage, there are still extra works com-
pared to two-channel condition.

Generally, likelihood ratio is used for confidence measure on
two-channel condition [3]. For instance, in iVector-based PLDA
model system, given a collection of enrolling vectors of the target
speaker W = {w1, . . . ,wR} and a test vector wx, We wish to test
the hypothesisHs that they come from the same speaker against the
hypothesis Hd that they come from different speakers. The likeli-
hood ratio for this hypothesis test is

S(W ,wx) =
p(W ,wx|Hs)

p(W ,wx|Hd)
(8)

On summed-channel condition, we obtain two test vectors wx0 and
wx1 from a test excerpt after speaker diarization. (8) needs to be
modified for this condition. Consider all possible hypotheses
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1. wx0 and W are from the same speaker, while wx1 from an-
other one

2. wx1 and W are from the same speaker, while wx0 from an-
other one

3. wx1, wx0 and W are from three different speakers

The first two hypotheses are target tests, so the likelihood ratio is
written as

S(W ,wx0,wx1) =
p(W ,wx0|Hs)p(wx1) + p(W ,wx1|Hs)p(wx0)

p(W ,wx0,wx1|Hd)

=
p(W ,wx0|Hs)

p(W ,wx0|Hd)
+

p(W ,wx1|Hs)

p(W ,wx1|Hd)
(9)

Note that the likelihood ratio on summed-channel test condition e-
quals to the sum of likelihood ratios of two speech segments calcu-
lated with training excerpts respectively. Another confidence mea-
sure formula can be given by using the max operator instead of sum
operator.

S(W ,wx0,wx1) = max
(
p(W ,wx0|Hs)

p(W ,wx0|Hd)
,
p(W ,wx1|Hs)

p(W ,wx1|Hd)

)
(10)

For the cosine distance criterion, we choose the larger score directly
as the distance has no sense of probability.

S(W ,wx0,wx1) = max
(∑

r

wT
rwx0

‖wr‖‖wx0‖
,
∑
r

wT
rwx1

‖wr‖‖wx1‖

)
(11)

5. EXPERIMENTS

5.1. Datasets and configurations

5.1.1. Datasets

The summed-channel speaker recognition experiments are per-
formed on the 3summed-summed subtask of the NIST SRE 2008
(SRE08) [8]. Here 3summed means that there are three summed-
channel excerpts for each target speaker enrollment, and summed
refers to the summed-channel test excerpt. We focus on female
telephone data only, on which the state-of-the-art performance is
worse than the one on male data. The meaning of female data
here refers to the gender of target speaker, while there may be con-
servations of cross-gender in enrolling and test excerpts. In this
case, we use gender-independent models for speaker diarization and
gender-dependent models for speaker clustering and verification.

The corresponding subtask of 3summed-summed on two-
channel condition is named 3conv-short3 in SRE08. We can obtain
the trials mapping relationships between those two tasks using the
information (e.g. speaker id) provided by NIST. We performed s-
peaker recognition on 3conv-short3 task as the upper bound of the
summed task. Finally, the female part of 3summed-summed task
comprises 709 target speakers, 709×3 = 2127 enrolling files, 1503
test files and 14891 trails.

5.1.2. Configurations

Diarization system: operated on a 20-dimensional MFCC feature,
gender-independent UBM with 1024 Gaussians, iVector extractor of
dimension 100.
Clustering system and verification system: operated on a 60-
dimensional feature which is formed by 20-dimensional MFCC ap-
pended with the first and second order derivatives, gender-dependent

Table 1. Corpora used to estimate the UBM, total variability matrix
(T ), LDA and PLDA models.

Diarization clustering and Verification
UBM T UBM T LDA PLDA

Fisher
√ √ √ √

SwitchBoard
√ √ √ √ √ √

NIST2004
√ √ √ √ √ √

NIST2005
√ √ √ √ √ √

NIST2006
√ √ √ √ √ √

UBM with 2048 Gaussians, iVector extractor of dimension 800, L-
DA and heavy-tailed PLDA (HT-PLDA) models with speaker factor
of dimension 200.

Table 1 summarizes the development corpora of all sub systems.
Finally, no score normalization technique is applied to any of the
systems.

5.2. Results

5.2.1. Target speaker clustering results

The goal of the target speaker clustering is to find 3 target segments
from 6 separated segments in the case of 3summed training condi-
tion. There are 8 possible combinations. To begin with, we separate
each summed-channel enrolling excerpt into two segments accord-
ing to the reference diarization answers provided by NIST. Although
the speaker clustering accuracy can be evaluated by the performance
of subsequent speaker recognition, we count the false speech seg-
ments clustered under objective functions described in Section 3 in
order to contrast and analyze those objective functions.

Table 2 reports the counts of different error numbers for the 709
speakers on 3summed training condition. The first column shows
the counts of speakers clustered without error (error = 0) and the
second column shows the counts of speakers clustered with a false
segment and two true segments (error = 1), and so on. The perfor-
mance of those objective functions is similar except Flike, with the
best performance under Flike.

Table 2. Counts of different error numbers on 3summed training
condition under different objective functions.

error 0 1 2 3
Fcos 688 14 0 7
Flike 525 95 41 48
Flike 697 6 0 6
Fpost 693 7 0 9
Fpost 691 12 0 6

In the case of R = 3, the binary sequence i has 8 possible
combinations. The calculations of objective functions are tractable
for small R. As R increasing, the number of possible combinations
grows exponentially. We can partition the excerpts into groups so
that each group contains 3 ∼ 5 excerpts only.

5.2.2. Summed-channel speaker recognition results

To evaluate the benefit from speaker diarization and clustering, we
first conduct speaker recognition experiments on summed-channel
speech data without diarization, as the lower bound of this task.

1661



Table 3. Speaker recognition performance on 3summed-summed
condition without speaker diarization.

EER(%) minDCF
LDA 19.3 0.0874

HT-PLDA 18.8 0.0736

Table 4. Speaker recognition performance on 3summed-summed
condition with different objective functions for target speaker clus-
tering.

LDA HT-PLDA
EER(%) minDCF EER(%) minDCF

Fcos 6.460 0.0316 4.109 0.0204
Flike 11.429 0.0436 8.387 0.0355
Flike 6.521 0.0317 4.052 0.0199
Fpost 6.582 0.0320 4.216 0.0209
Fpost 6.575 0.0319 4.098 0.0201

Then speaker diarization and clustering are applied to the summed-
channal data. Finally, we compare the performance of different com-
binations between summed-channel and two-channel speech data.

Table 3 shows the poor performance of system without speak-
er diarization because of the impurity of the speech data. Table 4
reports the speaker recognition performance based on LDA and HT-
PLDA with different objective functions for target speaker cluster-
ing. It can be seen that speaker diarization and clustering significant-
ly improve the summed-channel speaker recognition performance in
terms of both EER and minDCF. The performance of five proposed
objective functions is similar except Flike, which is consistent with
the results in Table 2. It indicates that the cosine distance criterion
works as well as the more complex PLDA approach. Furthermore,
the sum and max operation in HT-PLDA confidence measure (For-
mula (9) and (10)) are equivalent in our task.

In order to evaluate the upper bound of summed-channel speaker
recognition under proposed system, we also report the performance
on 3conv-short3 subtask in SRE08, which is the corresponding task
of 3summed-summed on two-channel condition, and different com-
binations between their training and test conditions in Table 5. 3conv
and short3 refer to the two-channel training and test condition re-
spectively. 3summed1 and summed1 denote the reference diariza-
tion which is assumed to have no diarization error. 3summed2 and
summed2 denote the diarization described in Section 2. Flike is used
as the objective function for all summed-channel training conditions.

As the results shown in Table 5 and Fig.2, system performance
degrades obviously from short3 to summed test conditions due to the
max (or sum) operation in each summed-channel trials. However,
the impact from 3conv to 3summed training conditions is less. It
indicates that the target speaker clustering approach is effective with
reliable front-end speaker diarization.

In summary, the performance loss from two-channel condition
to summed-channel condition in our work can be attributed to the
following three aspects. Firstly, the speaker diarization on summed-
channel condition is not accurate enough. Secondly, the objective
function of target speaker clustering in training phase needs to be
developed further. The accurate rate of objective function with best
performance is 697/709 = 98.30% even if the speaker diarization
is supposed to have no error. The performance degrades further with
the increasing of diarization error rate. Finally, the decision between
two confidence scores incurs additional risks in false alarm.

Table 5. Speaker recognition performance of different combinations
between training and test conditions in terms of EER(%) based on
HT-PLDA model.

XXXXXXXXXtraining
test short3 summed1 summed2

3conv 3.082 3.601 4.037
3summed1 3.270 3.788 4.209
3summed2 3.585 3.972 4.052

Fig. 2. Detection error tradeoff (DET) curves of different combina-
tions between training and test conditions based on HT-PLDA model

6. CONCLUSION AND RELATION TO PRIOR WORK

This paper studies about the NIST speaker recognition tasks on
summed-channel condition. The proposed summed-channel speaker
recognition system includes three major stages: speaker diarization,
target speaker clustering and speaker verification. Several objective
functions for target speaker clustering are presented and the best
one among them achieves 98.30% accurate rate with reference di-
arization on the female part of 3summed training dataset. We also
give the confidence measures for summed-channel trials scoring.
Experiments on NIST SRE 2008 show that the system works well
on summed-channel condition. We achieve an EER of 4.05% on
female telephone trials of 3summed-summed task based on heavy-
tailed PLDA model, which is only 1% absolute EER performance
loss compared to the result obtained on two-channel condition under
same approach.

Previous works on summed-channel evaluation tasks can be
found in [9, 10, 11, 12]. The works reported in [9, 10] considered
speaker recognition with summed-channel data on test condition,
while the enrolling data were two-channel recorded. This paper
presents a summed-channel speaker recognition system applied on
the task whose enrolling and test data are both recorded in summed-
channels. [11, 12] mainly studied about cross-show speaker diariza-
tion, which had some similarities with the target speaker clustering
presented in this paper. However, we are concerned about the tar-
get speaker only in the framework of speaker recognition, which
makes us analysis the problem from different perspectives. Several
target speaker clustering methods for multi-session enrollment are
proposed and achieve remarkable performance in our work.
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