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Abstract—The distributed resampling algorithm with non-
proportional allocation (RNA) [1] is key to implementing particle
filtering applications on parallel computer systems. We extend the
original work by Bolić et al. by introducing an adaptive RNA
(ARNA) algorithm, improving RNA by dynamically adjusting
the particle-exchange ratio and randomizing the process ring
topology. This improves the runtime performance of ARNA by
about 9% over RNA with 10% particle exchange. ARNA also
significantly improves the speed at which information is shared
between processing elements, leading to about 20-fold faster con-
vergence. The ARNA algorithm requires only a few modifications
to the original RNA, and is hence easy to implement.

Index Terms—Distributed resampling, particle filter, parallel
computing, tracking, image processing.

I. INTRODUCTION

Particle filters (PF) have experienced impressive improve-

ment since their introduction [2]–[4] and are considered the de

facto standard tool to estimate and track targets with non-linear

and/or non-Gaussian dynamics. Due to their computational

cost, however, many PF applications are limited to small

problems or require long execution times. In order to relax this

issue by leveraging parallelism in modern hardware, Bolić et

al. introduced a distributed algorithm in their seminal work [1]:

the distributed resampling algorithm with non-proportional

allocation (RNA), which enabled the development of PF

applications that efficiently use modern multi-core and multi-

processor hardware, such as computer clusters.

Here, we propose a simple, yet effective improvement to

RNA based on a randomized particle-routing scheme with an

adaptive particle-exchange ratio. This adaptive RNA (ARNA)

algorithm improves the runtime performance and the efficiency

of RNA. We benchmark these improvements in two situations

of object tracking, where (1) the particles on all PEs are

initialized at the location of the object to be tracked and

with ground-truth velocity, hence testing the (tracking) per-

formance, and (2) the particles on only one PE are initialized

near the object to be tracked, on all others they are initialized

uniformly at random. The latter tests how fast information is

shared between processing elements (PEs) once one of them

converged to the object (information sharing).

II. PARTICLE FILTERS

A generic PF algorithm consists of two parts: (i) sequential

importance sampling (SIS) and (ii) resampling [3]. A popular

combined implementation of these two parts is the sequential

importance resampling (SIR) algorithm [3].

Recursive Bayesian importance sampling [5] of an unob-

served and discrete Markov process {xk}k=1,...,K is based

on three components: (i) the measurement vector Z
k =

{z1, . . . , zk}, (ii) the dynamics (i.e., state-transition) model,

which is given by a probability distribution p(xk|xk−1), and

(iii) the likelihood (i.e., observation model) p(zk|xk). Then,

the state posterior p(xk|Z
k) at time k is recursively computed

as:

p(xk|Zk)
︸ ︷︷ ︸

posterior

=

likelihood
︷ ︸︸ ︷

p(zk|xk)

prior
︷ ︸︸ ︷

p(xk|Z
k−1)

p(zk|Z
k−1)

︸ ︷︷ ︸

normalization

, (1)

where the prior is defined as:

p(xk|Z
k−1) =

∫

p(xk|xk−1) p(xk−1|Z
k−1) dxk−1. (2)

PFs approximate the posterior at each time point k by N
weighted samples (i.e., particles) {xi

k, w
i
k}i=1,...,N . This ap-

proximation is achieved by sampling a set of particles from an

importance function (proposal) π(·) and updating their weights

according to the dynamics and observation models. This

process is called sequential importance sampling (SIS) [3].

However, SIS suffers from weight degeneracy, whereby small

particle weights become successively smaller and do not con-

tribute to the posterior any more. To overcome this problem,

a resampling step is performed [3] whenever the number of

particles with relatively high weights falls below a specified

threshold. In order to parallelize the SIR algorithm, one only

needs to focus on the resampling step, since all other parts of

the SIR algorithm are local and can trivially be executed in

parallel. The complete SIR algorithm is given in Algorithm 1.

III. CLASSICAL RNA

In a distributed-memory computer system with M process-

ing elements (PEs, m = 1, . . . ,M ), the resampling step in
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RNA is performed locally by each PE. While the number of

particles per PE hence remains constant, ensuring perfect data-

balance (i.e., all PEs hold the same amount of data), the weight

distribution across PEs can become unbalanced. This requires

particle routing (i.e., dynamic load balancing (DLB)) in which

every PE moves a constant fraction of its particles to another

PE, such that the particle weights become more evenly mixed.

A pseudocode for RNA is shown in Algorithm 2.

Algorithm 1 Sequential Importance Resampling (SIR)

1: (P) Propagate all particles according to the transition prior:

x
(i)
k ∼ p(x|x

(i)
k−1), i = {1, . . . , N}

2: (U) Update the weights taking into account the measure-

ments at time k, zk, as w̃
(i)
k = p(zk|x

(i)
k )w

(i)
k−1

3: Renormalize the weights as w
(i)
k = w̃

(i)
k /

∑N

j=1 w̃
(j)
k

4: Compute the estimate x̂k =
∑N

i=1 w
(i)
k x

(i)
k

5: Compute Neff = (
∑N

i=1(w
(i)
k )2)(−1)

6: Resample if Neff < Nthresh using Systematic Resampling

Algorithm 2 Resampling with Non-proportional Allocation

(RNA)

1: Exchange Nex of particles with neighboring PEs

2: Renormalize weights as w
(m,i)
k−1 = w

(m,i)
k−1 /Wk−1

3: Perform (P) and (U) steps of SIR to get smk
4: Compute the estimate x̂

m
k and the sum of unnormalized

weights W
(m)
k

5: Resample s
m
k using the locally normalized weights

w̃
(m,i)
k = w

(m,i)
k /W

(m)
k

6: Set the i-th weight to w
(m,i)
k = W

(m)
k

7: Send x̂
m
k and W

(m)
k to the master PE

8: The master PE computes x̂k and Wk and broadcasts the

result to all PEs

A. Particle Routing via Local Exchange

The local exchange method uses a fixed number of Np =
N/M particles on each PE and also fixes the number Nex

of particles to be exchanged. In this RNA configuration, the

PEs are arranged in a ring topology and each PE sends

Nex particles to its (counter-)clockwise neighbor in the ring.

Since each PE only communicates with its neighbor, several

rounds of communications are required until the weights are

approximately evenly distributed and the accuracy of the

particle representation of the posterior p(xk|Z
k) is recovered.

B. Deterministic Particle Routing Schedule

The local exchange method with a particle-exchange ratio of

10% or 50% is a popular choice when implementing RNA [1],

[6], [7]. This avoids the need for application-dependent DLB

schedules. Fixing Nex in the local exchange method, the DLB

scheme is easier and faster to design and implement. However,

since this DLB scheme is static, it does not adapt to the

dynamics of the application, where different load imbalance

situations may arise.

C. Ring topology

In the original RNA, the PEs are arranged in a ring and only

communicate with their adjacent neighbors. PE Pm randomly

selects Nex (out of its Np) particles and sends them to PE

Pm+1. Concurrently, it receives Nex new particles from Pm−1.

While the ring topology leads to a simple communication

schedule, it also has the lowest conductance (i.e., speed of

information spreading) from a graph-theory point of view.

Thus, the information of “good” particle weights is shared

only slowly across PEs. Furthermore, the performance of this

DLB scheme in the ring topology degenerates as the number

of PEs increases [8].

IV. ADAPTIVE RNA

We propose the ARNA algorithm, which improves over

the classical RNA by using dynamically adaptive particle-

exchange ratios and randomized ring topologies.

A. Adaptive Particle-Exchange Ratio

The traditional RNA uses a fixed particle exchange ratio that

need to be set by the user. We relax this constraint by making

Nex/Np dynamically adaptive, allowing it to vary between

0 . . . 50% as:

Nex = Np

[

0.5−
0.5(PEeff − 1)

M − 1

]

. (3)

Hence, Nex is negatively correlated with the tracking efficiency

PEeff, which is defined as:

PEeff =

(
∑M

m=1

∑N

i=1 w
(m,i)
k

)2

∑M

m=1

∑N

i=1(w
(m,i)
k )2

, (4)

where w
(m,i)
k is the weight of i-th particle on m-th PE. PEeff

measures the percentage of PEs that have already located the

object and track it successfully.

The adaptive exchange rate in ARNA frees the user of fixing

this parameter, and helps reduce communication-network con-

gestion and thus increases the parallel performance. The ad-

vantage of this adaptive approach becomes more pronounced

for high tracking accuracies, i.e., in the tracking case.

B. Randomized Ring Topology

In a complete graph, information can be shared between

any two PEs in single communication step. However, such

all-to-all communication limits the parallel scalability of the

algorithm. We introduce an improved (in the sense of faster

mixing) DLB scheme for ARNA that has the same communi-

cation cost as the original RNA, i.e., the same number of send

and receive operations per PE.

We exploit the power of randomization methods, which

are well-established for approximately solving NP-complete

problems, such as the present one. As a simple change to

RNA, we randomize the vertex labeling in the ring topology.

This is equivalent to having a complete graph and selecting

different, random Hamiltonian paths (i.e., paths that visit each

node exactly once) in this graph. Projecting the complete
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graph onto a ring topology via a Hamiltonian path, each PE

only communicates with two other PEs, as in the classical

RNA. We use Fisher-Yates shuffling [9] to efficiently compute

randomized ring topologies. One could also apply other regular

graphs with low maximum degree, but such topologies would

require knowledge about the hardware network connecting the

PEs in the actual machine. With no prior knowledge about

process-to-PE assignment and hardware network topology, the

present random ring labeling provides a simple tool to increase

the efficiency of information spread in ARNA.

C. Algorithm

ARNA only requires a few minor modifications to RNA

in steps 1 and 2. A pseudocode for ARNA is given in

Algorithm 3.

Algorithm 3 Adaptive RNA (ARNA)

1: Randomize the PE topology using Fisher-Yates shuffle [9]

2: Update the particle-exchange ratio Nex/Np according to

Eq. 3. This requires a global communication in order to

compute PEeff.

3: Exchange Nex of particles with neighboring PEs

4: Renormalize weights as w
(m,i)
k−1 = w

(m,i)
k−1 /Wk−1

5: Perform (P) and (U) steps of SIR to get smk
6: Compute the estimate x̂

m
k , and the sum of unnormalized

weights W
(m)
k

7: Resample s
m
k using the locally normalized weights

w̃
(m,i)
k = w

(m,i)
k /W

(m)
k

8: Set the i-th weight to w
(m,i)
k = W

(m)
k

9: Send x̂
m
k and W

(m)
k to the master PE

10: The master PE computes x̂k and Wk and broadcasts the

result to all PEs

V. BENCHMARKS

We benchmark the improvements of the proposed ARNA

over RNA using an application from object tracking in flu-

orescence microscopy imaging [10], [11]. The goal here is

to track the motion of small structures that are labeled with

fluorescent dyes. From this, one can then characterize the

dynamics of those objects and quantify, e.g., their velocity,

spatial distribution [12], motion correlations, etc.

We use the same previous sequential implementation of

SIR [13], [14] inside both RNA and ARNA. The dynamics

model assumes nearly constant velocity, and the appearance

model approximates each object by Gaussian intensity profile

in the final microscopy image. These are standard models that

adequately describe biological fluorescence microscopy [13],

[14]. The state vector in this case is x = (x̂, ŷ, vx, vy, I0)
T ,

where x̂ and ŷ are the estimated x- and y-positions of

the object, (vx, vy) its velocity vector, and I0 its estimated

fluorescence intensity. An example image of object tracking

in fluorescence microscopy imaging is shown in Fig. 1.

For the performance evaluation, 10 different, synthetically

generated image sequences are used, each containing 50

Fig. 1. Examples of synthetic images used in the benchmarks. Left:
One frame of a typical 2D image sequence with signal-to-noise ratio 2,
containing the small, bright objects of interest. Zoomed insets show noisy
object appearance, modeled using a 2D Gaussian intensity profile corrupted
with Poisson noise. Right: Typical object trajectories, generated according to
the nearly-constant-velocity model.

frames of size 512 × 512 pixels. The tracking performance

is evaluated for two different modes: tracking and information

sharing. In the first mode, all PEs contain particles that are

initialized at the true object state. In the second scenario, the

particles are uniformly randomly initialized in state space on

all but one PE. On one PE, the particles are initialized at the

true state. This models the situation that one PE has discovered

and converged on the object and needs to efficiently share this

information with the other PEs. After that, the two distributed

SIR implementations (one with ARNA and one with RNA)

are used to locate the object in the subsequent frames and

continue with accurate tracking and position estimation.

We compare ARNA against RNA with 0%, 10%, and 50%

particle-exchange ratios. The memory footprint of a single

particle is 52 B (i.e., six doubles and one integer. The six

doubles are the five components of the state vector and the

particle weight. The integer is the process ID of where that

particle belongs). All tests of tracking are repeated 50 times for

statistical significance. For information sharing, we benchmark

the recovery curve of PEeff on five different synthetic image

sequences, each test repeated 10 times. All experiments are

run on the MadMax computer cluster of MPI-CBG, Dresden,

which is equipped with 128 GB DDR3 800-MHz memory per

node and two Intel R© Xeon R© E5-2640 six-core processors

per node with a clock speed of 2.5 GHz. Both ARNA and RNA

are implemented in Java (v. 1.7.0 13) in the Parallel Particle

Filtering (PPF) library [15]. We use OpenMPI’s Java bindings

(v. 1.9a1r28750) for inter-process communication [16].

A. Tracking performance

We initialize 19.2 million particles at the location of the

targeted object and thus we ensure high-accuracy tracking. In

such a scenario, if correct dynamics and observation models

are used, inter-process communication is virtually unnecessary

since all PEs independently track the object. The classical

RNA model, however, is oblivious to the mode of the applica-

tion, as the process topology and the particle-exchange ratio

are fixed. In ARNA, the particle exchange ratio Nex/Np is
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Fig. 2. Left: Execution times of RNA with 50% exchange (red), 10%
exchange (blue), and 0% exchange (purple) compared with the timings for
ARNA (black). A fixed total number of 19.2 million particles is distributed
over an increasing number of PEs (strong scaling). ARNA is faster than RNA
with 10% and 50% exchange. RNA with 0% exchange (i.e., embarrassingly
parallel RNA) defines the lower bound for this test case, where no commu-
nication is necessary. Beyond 192 PEs, the number of particles per processor
is too small to amortize the constant communication overhead. Right: RMSE
tracking accuracy in pixels (40 particles per PE, initialized at the target.)
RNA with 50% particle exchange (red) and ARNA (black) show comparable
tracking accuracy, whereas RNA with 10% exchange (blue) yields lower
accuracy. As the total number of particles increases, the tracking becomes
more accurate in all cases.

negatively correlated with the tracking efficiency. PEs do not

exchange any particles if PEeff is above 99%. The runtime

results of the benchmarks are shown in Fig. 2. The tracking

accuracy of ARNA is comparable to that of RNA with 50%

particle exchange. When exchanging only 10% of the particles

in RNA, the accuracy drops. Visually, however, all resulting

trajectories are indistinguishable, as the Root Mean Square

Error (RMSE) of the tracking is below 0.1 pixel in all cases.

B. Information Sharing Performance

In applications with no prior information about the initial

state of the system, it is common practice to initialize the

particles uniformly at random throughout the state space. This

helps explore the state space and first detect the object to be

tracked. At some point, one of the PEs will (stochastically)

detect the object to be tracked and the particles on the PE

converge around the object. Until this point, all PEs uniformly

sample the state space and communication between them does

not help. Once one PE has found the target, however, this

information should be disseminated among all PEs as quickly

as possible, in order to allow the other PEs to contribute to

the tracking accuracy. In a parallel PF application we want all

PEs to contribute to the result (i.e., not waste computational

resources). PEeff should hence reach 100% as quickly as

possible after initialization.

In ARNA, the randomized ring topology helps share the

detection information more rapidly. Figure 3 shows how PEeff

evolves with algorithm iterations for the different parallel

algorithms, counting iterations from the time point where one

of the PEs has found the object.

VI. CONCLUSIONS

We presented ARNA, an adaptive randomized version of

the classical RNA [1] algorithm for parallel particle filtering,

which is easy to implement and requires only few minor
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Fig. 3. Percentage of PEs engaged in successful tracking of the target (PEeff)
as a function of iteration number during the information sharing phase: ARNA
(black), RNA with 10% particle exchange (blue), and RNA with 50% particle
exchange (red) on 24, 96, 192, and 384 PEs. The randomized ring topology
of ARNA leads to a faster spread of information and hence a higher tracking
efficiency.

changes with respect to RNA. ARNA uses a dynamically

adapted, tracking efficiency-dependent particle-exchange ratio.

In cases where only little communication is required, ARNA is

about 9% faster than RNA with a 10% exchange ratio. More-

over, ARNA enhances information sharing via randomizing

the ring topology of the PEs. This leads to a faster increase in

the percentage of PEs that have successfully located the target

once at least one PE has converged. ARNA hence improves

the tracking accuracy and effectiveness by having more PEs

contribute to the result earlier. Benchmarks show that in a large

network of 384 PEs, the difference between RNA and ARNA

is even more pronounced: both RNA versions score below

4% PEeff, whereas ARNA reaches 60% after 10 iterations,

converging to over 80% after 20 iterations.

Future work could further improve ARNA by including

prior knowledge about how the processes are assigned to

PEs and how the latter are connected in the machine by the

hardware network. This way, neighboring PEs in the ring can

reside on the same cluster node, hence further reducing com-

munication overhead. Using hardware-topology information

would also enable the use of other regular graphs with low

maximum degree as communication topologies, which may

better reflect a specific hardware than a generic ring topology.
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