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ABSTRACT

We present a new exponential B-spline basis that enables the
construction of active contours for the analysis of biomedical
images. Our functions generalize the well-known polynomial
Hermite B-splines and provide us with a direct control over
the tangents of the parameterized contour, which is absent in
traditional spline-based active contours. Our basis functions
have been designed to perfectly reproduce elliptical and circu-
lar shapes. Moreover, they can approximate any closed curve
up to arbitrary precision by increasing the number of anchor
points. They are therefore well-suited to the segmentation of
the roundish objects that are commonly encountered in the
analysis of bioimages. We illustrate the performance of an
active contour built using our functions on some examples of
real biological data.

Index Terms— Exponential Hermite splines, parameter-
ization, active contour, segmentation, parametric snake.

1. INTRODUCTION

Automated segmentation of biomedical images is a major
challenge that is often addressed using active contours. In par-
ticular, parametric active contours, referred to as “snakes” [1],
are efficient tools for such tasks. A large variety of such mod-
els have been presented in the literature [2, 3, 4]. While the
design of active contours differs in each case, a two-step al-
gorithmic structure is conserved. In a first step, the snake is
initialized by the user or another detection scheme. Then, the
curve is made to evolve on the image through the optimization
of a cost functional [5].

Our contribution is a class of active contours built using
a novel kind of exponential B-spline basis functions. The
snakes we introduce have two main features that make them
well-suited to the analysis of bioimages. Firstly, we rely on
two complementary basis functions, a construction inspired
from Hermite interpolation [6] that grants direct control both
on the curve and on its tangent field. It therefore enables a
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Fig. 1. Comparison of the ability of the proposed parametric
snake to approximate an arbitrary closed curve against tradi-
tional spline-based parametric snakes. Due to its additional
tangential control, our model is able to generate complex
shapes using fewer parameters than the traditional spline-
based snakes specified by their control polygon.

Bézier-type representation where complex shapes can be gen-
erated relying on fewer anchor points than traditional spline-
based parametric snakes, as pictured in Figure 1. Secondly, it
has ellipse-reproducing capabilities. This property is very de-
sirable as elliptical and round elements such as cells, nuclei,
or cross-sections of tubes are common in biomedical images.
The method we propose is therefore attuned to a wide range
of segmentation tasks.

Our snake model allows for extensive user interaction
with the contour while keeping the segmentation process
mostly automated. Furthermore, because our functions are
interpolating by design, the contour can be precisely edited.
The approach was implemented as a plugin for the open-
source image-analysis software ImageJ [7] and is available
online1 for use by the bioimage-analysis community.

In this paper, we first define the Hermite exponential B-
splines we propose, and specify some of their key properties.
Then, we introduce the active-contour model built using these
functions. Finally, we provide evidence of the efficiency of
our method by showing segmentation results on real biologi-
cal data.

1http://bigwww.epfl.ch/algorithms/hermitesnake/
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Fig. 2. Ellipse-reproducing Hermite exponential B-spline ba-
sis functions (represented for M = 20).

2. HERMITE EXPONENTIAL B-SPLINES

We have designed new exponential Hermite spline functions,
which generalize the classical Hermite polynomial splines in-
troduced by Lipow and Schoenberg [8]. They are specified by
the two basis functions

φ1,M (t) =

{
g1,M (t) t ≥ 0
g1,M (−t) t < 0

φ2,M (t) =

{
g2,M (t) t ≥ 0
−g2,M (−t) t < 0

(1)

built using the generator functions

g1,M (t) =

{
a1(M) + b1(M)t+ c1(M)ej 2π

M t + d1(M)e−j 2π
M t 0 ≤ t ≤ 1,

0 elsewhere

g2,M (t) =

{
a2(M) + b2(M)t+ c2(M)ej 2π

M t + d2(M)e−j 2π
M t 0 ≤ t ≤ 1,

0 elsewhere,

where M is a positive integer. The coefficients of the genera-
tors can be expressed as

a1(M) =
j 2π

M +1+ej 2π
M (j 2π

M −1)
q(M) b1(M) = − j 2π

M (ej 2π
M +1)

q(M)

c1(M) = 1
q(M) d1(M) = − ej 2π

M

q(M)

a2(M) = p(M)

j 2π
M (ej 2π

M −1)q(M)
b2(M) = − ej 2π

M −1
q(M)

c2(M) =
ej 2π

M −j 2π
M −1

j 2π
M (ej 2π

M −1)q(M)
d2(M) = − ej 2π

M (ej 2π
M (j 2π

M −1)+1)

j 2π
M (ej 2π

M −1)q(M)
,

where

p(M) = j
2π

M
+ 1 + ej 4π

M (j
2π

M
− 1)

q(M) = j
2π

M
+ 2 + ej 2π

M (j
2π

M
− 2).

We display φ1,M and φ2,M along with their derivatives in Fig-
ure 2. The support of these two functions is limited to the
interval [−1, 1]. The fundamental property of this construc-
tion is that the generating functions φ1,M and φ2,M and their
derivatives φ′1,M and φ′2,M satisfy the joint interpolation con-
ditions

φ1,M (n) = δn φ2,M (n) = 0
φ′1,M (n) = 0 φ′2,M (n) = δn

for all n ∈ Z. These basis functions also have the prop-
erty of reproducing the function space {1, t, ej 2π t

M , e−j 2π t
M }.

Hence, they can be used to generate ellipsoid curves. More
mathematical properties of the cardinal Hermite exponential
splines, including the associated vector subdivision scheme,
are discussed and investigated in the research note [9]. Fi-
nally, since

∀t ∈ R :

∞∑
k=−∞

φ1,M (t− k) = 1

∞∑
k=−∞

φ2,M (t− k) = 0,

the partition of unity condition is verified [10], which is fun-
damental for ensuring affine invariance. Any curve parame-
terized by our exponential Hermite splines will therefore be
position- and orientation-independent.

3. PARAMETRIC HERMITE SNAKE

Here, we introduce an active contour capable of repre-
senting closed curves using the two complementary basis
functions (1). The snake is defined entirely by an M -
periodic sequence of anchor points {r[k]}k∈Z and tangent
vectors {r′[k]}k∈Z, with r[k] = r[k + M ] = r(t) |t=k and
r′[k] = r′[k +M ] = r′(t) |t=k. The contour is then repre-
sented by the continuous-domain parameterization

r(t) =

M−1∑
k=0

r[k]φ1,M,per(t− k)

+ r′[k]φ2,M,per(t− k), (2)

where t ∈ [0,M ]. Since our construction is designed to pro-
duce closed contours, we rely on M -periodized versions of
our basis functions φ1,M and φ2,M that we denote by

φ1,M,per(t) =

∞∑
n=−∞

φ1,M (t−M n)

φ2,M,per(t) =

∞∑
n=−∞

φ2,M (t−M n).
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Fig. 3. Reproduction of an ellipse using the proposed expo-
nential Hermite snake.

The positive integerM determines the flexibility of the shape:
smaller values of M lead to constrained shapes, while larger
ones accommodate more general curves. Therefore, using
this model, any closed shape can be approximated to an ar-
bitrary level of accuracy by simply increasing M .

This model is reminiscent of the exponential-splines
snake (referred to as E-snake) proposed by [11] in the sense
that it also allows perfect ellipse reproduction. The novel as-
pect is the second basis function φ2,M which brings explicit
control over the tangents. The ability to add constraints on
the derivative of the curve increases the interaction potential
of the snake. This aspect, combined with the interpolation
properties of our basis functions, greatly facilitate the design
of a flexible user interface, as illustrated in Figure 1. We show
in Figure 3 how only two anchor points and their tangents are
required to reproduce ellipses. In such case, the generators of
the exponential Hermite splines reduce to

g1,2(t) =

{
1
2 + 1

2 cos(π t) 0 ≤ t ≤ 1
0 otherwise

g2,2(t) =

{
1
4 cos(π t) + 2

π
sin(π t) + 2 t− 1 0 ≤ t ≤ 1

0 otherwise.

The explicit presence of tangents in our model immediately
reminds of the Bézier representation. Yet, the functions are
different since they are piecewise exponentials as opposed to
piecewise polynomials. In fact, our model uses the shortest-
possible functions that have the Hermite property, satisfy the
partition of unity, and reproduce ellipses.

4. EXPERIMENTS

We demonstrate potential applications of our exponential
Hermite snake in microscopic images. We present results
on two datasets consisting of images of roundish objects.
The images we use are actual biological data. As such, they
are representative of the challenges encountered in the real
world. In either case, automatic segmentation was performed
in a matter of seconds.

4.1. Segmentation of Phase-Contrast Microscopic Images

We first assess the efficiency of our snake model in segment-
ing phase-contrast microscopic images featuring C. Elegans
embryo at the 1-cell stage. Data obtained with this imaging
modality are challenging for automatic analysis because of
the inherent “oriented shading” effect. Indeed, the outline
of a cell does not appear as an edge with the same polarity
around the whole cell. Most segmentation approaches based
on classical edge detectors are unsuccessful on such images.
Our Hermite snake is however able to capture the shape of the
cell and segment it even with a rough initialization. A sample
of the results we obtained is shown in Figure 4. As the C.
Elegans embryo is composed of only one elliptical cell at this
developmental stage, we initialized our active contour with
M = 2 anchor points in each case.

4.2. Outline of the Nucleus of a Cell in Fluorescence Im-
ages

Our second dataset consists of fluorescence images featuring
nuclei of mouse fibroblast. The objects appear more or less
faint depending on the expression of a given protein. The
challenge in these images resides in the fact that cells can
adopt various shapes and exhibit ill-defined or discontinuous
boundaries. We initialized several contours roughly around
nuclei in the image. We adapted the number of anchor points
M to the complexity of the shape of the nucleus. After opti-
mization, our Hermite snakes were able to outline objects of
interest with a variety of intensity and shapes, as displayed in
Figure 5.

5. CONCLUSION

In this paper, we introduced new exponential B-splines in-
spired from the cubic Hermite splines. These result in the
specification of complementary basis functions that jointly in-
terpolate contour points and their tangents. The conditions
that we have imposed ensure affine invariance and the ability
to reproduce ellipses and circles.

Using these functions, we implemented a novel paramet-
ric segmentation algorithm for the analysis of bioimages. Our
approach benefits from several key advantages. First, the
ellipse-reproducing property of our model is well-suited to
outlining blob-like objects. Then, the additional tangential
controls facilitate user-friendly interactions. The applicability
of our method was illustrated on real biological data featuring
circular or elliptical structures of interest.
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Fig. 4. Segmentation of C. Elegans embryo on phase-contrast microscopic images. Initial elliptical fits are displayed as dashed
lines. Results after optimization are shown as solid lines.

Fig. 5. Outline of mouse fibroblast nuclei in fluorescence
microscopic images. Dashed lines correspond to the initial
contour of the snake and solid ones to the result obtained af-
ter automatic optimization. From left to right, the contour is
composed of M = 2, M = 3, M = 3, and M = 4 anchor
points.
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