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ABSTRACT
Identification of functional modules in protein protein inter-
action (PPI) networks may help better understand cell func-
tions. Many existing computational methods focus on identi-
fying modules based on either individual PPI networks or pro-
tein sequence similarities within the species. As both interac-
tion data and sequence similarities may not be either com-
plete or accurate with respect to revealing protein functional-
ities, we propose a joint clustering framework based on block
modeling to integrate the available information across differ-
ent species to utilize both protein interaction data and se-
quence similarities. The motivation is to borrow strengths
from multiple data sources for more accurate module iden-
tification as evolutionally different species may share simi-
lar cellular organization. Our blockmodel joint clustering en-
ables the identification of not only densely connected mod-
ules but also those modules containing proteins with similar
interaction patterns to the rest of the networks. We develop
a simulated annealing (SA) algorithm based on Potts-Models
for the blockmodel problem to solve the non-convex combi-
natorial optimization. Our method is validated using synthetic
networks as well as yeast and fruit fly PPI networks. The ex-
perimental results conclude that joint clustering outperforms
clustering of individual networks separately.

Index Terms— Joint clustering; PPI network; Protein se-
quence similarity; Simulated annealing

1. INTRODUCTION
In computational biology, network clustering helps identify
groups of molecules that share similar constituent, topologi-
cal, or functional properties and collaborate to achieve coher-
ent and distinct cellular functions [1]. Many existing algo-
rithms focus on identifying “clusters” as functional modules
which have more than expected internal interactions. How-
ever, the mathematically “optimal” clustering based on this
modularity-based definition may not necessarily capture the
actual functional organization of biological networks [2]. As
pointed out in [3], there are more structures in biological net-
works other than densely self-connected modules. To iden-
tify biologically meaningful functional modules with diverse
topological structures, blockmodel module identification [3,
4, 5, 6] have been proposed by taking into account the roles
of proteins in networks reflected by their interaction patterns.
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Fig. 1. A. Network clustering separately for two networks G1

and G2; B. Sequence similarities between G1 and G2; C. Joint
network clustering. The width of edges in the virtual modular
space is proportional to the number of aggregated edges in
original networks.

Recently, comparative network analysis [7, 8, 9] has
demonstrated to be able to identify functional modules that
are evolutionarily conserved across species by identifying
similar subnetworks or cohesive mappings based on sim-
ilarity between biomolecules and their interactions. This
motivates our work to jointly cluster PPI networks, which
integrates available large-scale constituent, topological, and
functional information regarding proteins and their interac-
tions to obtain biologically meaningful clustering results. We
propose a new joint network clustering method for a pair
of PPI networks which integrates both protein interaction
and sequence similarities. We formulate network clustering
as a block modeling problem by mapping the original net-
works to an image graph in which nodes represent potential
functional modules with specific functionalities. The image
graph optimally preserves the interaction patterns among
nodes of the original networks across corresponding modules
(Figure 1A), and enables to capture the functional interdepen-
dences between biomolecules based on the ways they interact
with each other. We adopt a simulated annealing (SA) al-
gorithm for the corresponding Potts-model [3] to solve the
non-convex problem of simultaneous module identification
across two networks, which has been shown to yield high
quality results. Our experimental results with both synthetic
and real-world PPI networks demonstrate that our new joint
clustering algorithm solved by SA (JointSA) outperforms
separate block modeling clustering algorithm (SingleSA).

2. METHODS

We first develop an integrated mathematical model for joint
clustering of two PPI networks. The motivation is to ob-
tain biologically meaningful results by integrating useful in-
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formation and accrued knowledge from two networks across
species. The essence of the integrated model is to introduce
a common virtual network as the image graph for both net-
works. From the perspective of evolution, different species
may evolve form the same ancestor and share the same func-
tional modular structure. The virtual network, where each
node represents a potential module (either densely connected
or sparsely connected) with groups of proteins with similar
cellular functions, provides insights into the cellular func-
tional organization by the derived modular structure as shown
in Figure 1C. We solve the module identification for two net-
works at the same time by mapping each network into this
virtual network. By this integrated model, evolutionarily con-
served molecules are more likely to possess independent but
coherent functions.

2.1. Joint network clustering
Let two given PPI networks from two species be Gk =
{Vk, Ek}(k = 1, 2), where Vk = {uk1 , uk2 , ..., ukNk} are sets
of nodes that represent proteins in Gk andEk are sets of edges
representing interactions among proteins in Gk. The network
topology of Gk can be represented by adjacency matrix Ak,
where Akij ∈ {0, 1} denotes the interactions between nodes
uki and ukj in Gk. Let S12(u1

i , u
2
j ) represent the sequence

similarity between node u1
i ∈ V1 and node u2

j ∈ V2. We aim
to find mappings from the given networks to the introduced
virtual network M = {VM , EM} as illustrated in Figure 1C,
where Vm = {vm1 , vm2 , ..., vmNm} denotes the virtual nodes
in M and Nm is the total number of virtual nodes in M
(Nm ≤ mink≤2{Nk}). The adjacency matrix of M is AM .
For each given network Gk, we define a many-to-one map-
ping Ψk : Vk 7→ VM to the virtual network M . For a node uki
in Gk, Ψk(i) assigns it to a virtual node vmi , 1 ≤ i ≤ Nm.

In order to consider the sequence similarities between the
nodes across networks and the interaction similarities shared
by proteins in two networks, we formulate our joint clustering
objective function as follows:

max
Ψ1,Ψ2,AM

λU(S12,Ψ1,Ψ2)+(1−λ)Q(A1, A2, AM ,Ψ1,Ψ2),

(1)
in which λ is a weighting coefficient. FunctionU(S12,Ψ1,Ψ2)
computes the total similarity score based on the sequence sim-
ilarity between corresponding proteins assigned to the same
virtual node according to Ψ1 and Ψ2 in two networks.

U(S12,Ψ1,Ψ2) =

1≤j≤N2∑
1≤i≤N1

S12(u1
i , u

2
j )δΨ1(i),Ψ2(j), (2)

where δv,v′ is the indicator function, which equals to 1 when
v = v′ and 0 otherwise. Function Q(A1, A2, AM ,Ψ1,Ψ2)
measures the conservation of interaction patterns shared by
corresponding proteins assigned to the same module, for
which we develop a pairwise block modeling formulation to
jointly consider the mapping quality between two networks
as well as the interaction patterns within both networks.

Mathematically, for each network Gk, Ψk should mini-
mize the mismatch between the given network Gk and the in-
troduced virtual network M [3]:

min
Ψk,AM

Nk∑
i 6=j

[
Akij −AMΨk(i)Ψk(j)

]
(Akij − pkij), (3)

in which
[
Akij −AMΨk(i)Ψk(j)

]
calculates the number of mis-

matched edges between Gk and M and (Akij − pkij) de-
notes the penalty for the corresponding mismatch. We set

pkij =
∑
i′ 6=i A

k
ii′

∑
j′ 6=j A

k
j′j∑

i′ 6=j′ A
k
i′j′

to make the total mismatch er-

ror on existing edges equal to the error on absent edges
(
∑N
i 6=j A

k
ij(A

k
ij − pkij) =

∑N
i 6=j(1−Akij)pkij).

Although AM is unknown before clustering, algebraic
manipulations can lead to the absorption of optimizing AM

in the following optimization problem [3]:

max
Ψk

Nm∑
m,n

∣∣∣∣∣∣
Nk∑
i 6=j

(Akij − pkij)δΨk(i),mδΨk(j),n

∣∣∣∣∣∣ . (4)

Once we derive Ψk [3], AM can be estimated based on the
interaction preservation in (3) in a straightforward manner.
Therefore, for G1 and G2, we have Q(A1, A2, AM ,Ψ1,Ψ2)
equal to

Nm∑
m,n

∣∣∣∣∣∣
∑
k=1,2

Nk∑
i 6=j

(Akij − pkij)δΨk(i),mδΨk(j),n

∣∣∣∣∣∣ . (5)

To summarize, the final formulation for joint blockmodel
clustering can be written as:

max
Ψ1,Ψ2

λ

1≤j≤N2∑
1≤i≤N1

S12(u1
i , u

2
j )δΨ1(i),Ψ2(j)

+(1− λ)

Nm∑
m,n

∣∣∣∣∣∣
∑
k=1,2

Nk∑
i 6=j

(Akij − pkij)δΨk(i),mδΨk(j),n

∣∣∣∣∣∣ .
(6)

2.2. Optimization for joint network clustering
With the new mathematical model for joint network cluster-
ing, we now turn to the problem of solving the optimization
problem (6). To obtain high quality solutions for this highly
non-convex problem, we implement a simulated annealing
(SA) algorithm based on the heat-bath algorithm for Potts-
Models [3].

To derive the SA algorithm, we assume that each potential
virtual node vmi in M represents a spin state and Ψk assigns
each original network node to an arbitrary spin state. We use
Hvmφ

to denote the energy of the system represented in the ob-
jective function (6) with Ψk(i) = vmφ at temperature T . We
apply the single spin heat-bath update rule, which updates the
system energy when making a state change for a given node
uki from a state vmφ to vmα : Hvmα

= Hvmφ
+ ∆HΨk(i):vmφ →vmα .
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The probability of making state assignment change is propor-
tional to the exponential of the corresponding energy change
of the entire system with all other nodes’ states fixed.

p(Ψk(i) = vmα ) =
exp

{
−β∆HΨk(i):vmφ →vmα

}
∑Nm
n=1 exp

{
−β∆HΨk(i):vmφ →vmn

} , (7)

in which β = 1/T . In order to compute the energy change
∆HΨk(i):vmφ →vmα at T , we first decompose the energy change
into two terms based on (1):

∆HΨk(i):vφ→vα = λ∆UΨk(i):vφ→vα+(1−λ)∆QΨk(i):vφ→vα ,
(8)

where ∆UΨk(i):vmφ →vmα computes the energy change with re-
spect to node similarities caused by switching uki from the
state vmφ to vmα . We can write ∆UΨk(i):vmφ →vmα as:

∆UΨk(i):vmφ →vmα =

Nl∑
j

Skl(u
k
i , u

l
j)
[
δΨl(j),vmα − δΨl(j),vmφ

]
,

(9)
Each potential state change based on (9) takes O(Nvmφ +
Nvmα ) operations where Nvmφ and Nvmα denote the number of
nodes assigned to states vmφ and vmα . Thus, each local update
takes O((N1 +N2)(Nvmφ +Nvmα )) operations.

The energy change with respect to network structure
∆QΨk(i):vφ→vα can be calculated similarly as in [3] by the
following equation

∆QΨk(i)=vmφ →vmα =(∣∣∣akvmφ −i,vmφ −i + alvmφ ,vmφ

∣∣∣− ∣∣∣akvmφ ,vmφ + alvmφ ,vmφ

∣∣∣)
+
(∣∣∣akvmα +i,vmα +i + alvmα ,vmα

∣∣∣− ∣∣∣akvmα ,vmα + alvmα ,vmα

∣∣∣)
+2
(∣∣∣akvmφ −i,vmα +i + alvmφ ,vmα

∣∣∣− ∣∣∣akvmφ ,vmα + alvmφ ,vmα

∣∣∣)
+2
∑NM
s6=vmφ ,vmα

(∣∣∣akvmφ −i,s + alvmφ ,s

∣∣∣− ∣∣∣akvmφ ,s + alvmφ ,s

∣∣∣)
+2
∑NM
s6=vmφ ,vmα

(∣∣∣akvmα +i,s + alvmα ,s

∣∣∣− ∣∣∣akvmα ,s + alvmα ,s

∣∣∣)
,

(10)
where akr,s is the overall mismatch penalty between modules
r and s in Gk. mk

r,s represents the total interactions between
modules r and s in Gk and Dk

r is the summation of the de-
grees of all the nodes in module r inGk. The subscript vmφ −i
in (10) stands for the operation of removing the correspond-
ing node uki from the set of nodes assigned to vmφ while vmα +i
denotes adding the node to vmα . These values in (10) can be
efficiently computed by the following equations:

akr,s = mk
r,s −

Dk
rD

k
s

2Mk
; (11)

mk
r,s =

∑
ij

AkijδΨk(i),rδΨk(j),s; (12)

Dk
r =

∑
ij

AkijδΨk(i),r; Mk =
∑
ij

Akij ; (13)

akvmφ −i,vmφ −i = mk
vmφ v

m
φ

+ 2dki→vmφ −
(Dk

vmφ
− dki )2

2Mk
; (14)

akvmα +i,vmα +i = mk
vmα v

m
α

+ 2dki→vmα −
(Dk

vmα
+ dki )2

2Mk
; (15)

akvmφ −i,vmα +i = mk
vmφ v

m
α
−dki→vmα +dki→vmφ −

((Dk
vmφ

)2 − (dki )2)

Mk
;

(16)

akvmφ −i,s = mk
vmφ s
− dki→vmα −

(Dk
vmφ
− dki )Dk

s

2Mk
. (17)

where dki→vmφ =
∑
j A

k
ijδj,vmφ denotes the number of interac-

tions between node uki and nodes in state vmφ and dki denotes
the degree of the node uki . Based on the equations (10) to (17),
the local update for ∆Q takes O((N1 + N2)N2

m) operations
at each temperature.

3. EXPERIMENTS
To demonstrate that our joint network clustering algorithm
(JointSA) is superior to separate network clustering algo-
rithms, we compare our algorithm with the block modeling
clustering algorithm of single networks solved by simulated
annealing (SingleSA) [3] on synthetic networks and two PPI
networks collected from the Database of Interacting Proteins
(DIP) [10].

3.1. Synthetic networks
We test JointSA and SingleSA on a set of synthetic networks.
We first generate noise-free networks based on the virtual
network shown in Figure 2A. In the virtual network, virtual
nodes “a”, “b” and “e” represent densely connected modules
and virtual nodes “c” and “d” represent the modules having
the bi-partite structure with interactions running mainly be-
tween nodes assigned to them. We set the sizes of the mod-
ules corresponding to the virtual nodes “a”, “b”, “c”, “d” and
“e” to 16, 48, 32, 32 and 80 respectively. Additionally, we can
add noise to networks with the noise level as the percentage
of interactions that do not adhere to the topology of these vir-
tual nodes. A similar setting has been used for benchmarking
in [11, 3]. For separate network clustering, we apply Sin-
gleSA to these randomly generated synthetic networks with
different noise levels. For joint network clustering, we simply
use two same synthetic networks and further introduce a node
similarity S12 between them, in which we randomly assign 8
similar pairs in average for each node. We change the diffi-
culty of the joint clustering task by using different noise levels
for both network interactions and the nodes similarities. As
our JointSA also uses simulated annealing for optimization,
we use the same parameters for both SingleSA and JointSA.
Both SingleSA and JointSA converge to the final solutions
within a few minutes.

As we know the ground truth of the structure in synthetic
networks, we use normalized mutual information (NMI) [12]
between the ground truth and the clustering results obtained

1637



c

a

e

d

b

1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/160.5

0.6

0.7

0.8

0.9

1

NM
I

 

 

SingleSA
JointSA

Noise Level 

A B C 

D 

Fig. 2. Results for synthetic networks with a known underly-
ing structure: A. The structure of the virtual network. B. One
example of the adjacency matrix for a generated network at
the noise level 0.5; C. One example of the similarity matrix at
he noise level 0.5; D. Performance comparison.

by both algorithms to evaluate the clustering accuracy. Fig-
ure 2D shows the performance comparison between JointSA
and SingleSA. At each noise level, we randomly generate 50
networks. And for each network, we take the best out of 10
runs with different random initializations. The average and
the standard deviation of the NMI obtained from 50 randomly
generated networks are plotted in Figure 2D. Clearly, our
JointSA significantly outperforms SingleSA, which implies
that the integration of the information across two network
including node similarities with reasonable accuracy may
significantly improve joint clustering results.

3.2. Protein interaction networks
In order to validate that joint network clustering can de-
tect more biologically meaningful modules than the separate
clustering, we further compare JointSA and SingleSA on real-
world PPI networks. We use the PPI networks of S. cerevisiae
(Sce) and D. melanogaster (Dme) extracted from DIP [10].
These two networks have 4,990 nodes with 21,911 edges
(Sce) and 7,390 nodes with 22,695 edges (Dme) respectively.
The similarities among proteins across two networks are com-
puted by SSEARCH routine in the FASTA package [13]. The
final protein similarity is binary by setting to 1 when the e-
value between two protein sequences is lower than 10−5, and
0 otherwise. With such large PPI networks, it takes several
hours for JointSA and SingleSA to converge.

We annotate each node in PPI networks by its corre-
sponding gene name and use Ontologizer [14] to perform
Gene Ontology (GO) enrichment analysis for the results
obtained by JointSA and SingleSA. GO enrichment analy-
sis helps interpret the corresponding cellular functions for
the proteins in derived modules by statistically detecting
whether they correspond to a specific gene ontology category
(GO term). Figure 3A shows the number of significantly
enriched modules detected by both JointSA and SingleSA.
From Figure 3A, we find that JointSA identifies more GO

enriched modules than SingleSA for both S. cerevisiae and
D. melanogaster PPI networks for different number of mod-
ules (Nm). Figure 3B illustrates the number of enriched GO
terms that cover fewer than 100 proteins for the identified
modules by both JointSA and SingleSA. We observe that the
modules detected by JointSA have more annotated GO terms
with smaller sizes (< 100), which implies that the identified
modules by JointSA are enriched with more specific cellu-
lar functionalities. Hence, JointSA can identify biologically
more significant modules with known cell functions.
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Fig. 3. A. Number of modules with statistically significantly
enriched GO terms below 1% after Bonferroni correction for
different Nm. B. Number of statistically significantly en-
riched GO terms that cover fewer than 100 proteins.

4. DISCUSSION

In this paper, we propose a novel mathematical framework
for joint clustering two PPI networks simultaneously. Fur-
thermore, our mathematical framework (1) can be extended
to multiple networks in a straightforward manner with the fol-
lowing objective function:

max
Ψ1,...,Ψk,AM

λ
∑
i<j

U(Sij ,Ψi,Ψj)

+ (1− λ)Q(A1, ..., Ak, AM ,Ψ1, ...,Ψk).
(18)

We note that the corresponding local update for the SA
optimization has O(

∑k
i NiN

2
m) computational complexity,

which scales linearly with respect to the number of networks
k. The convergence of the corresponding simulated annealing
solution can be guaranteed by setting the initial temperature
high and the cooling down procedure slow [15].

Our joint clustering formulation integrates conserved sim-
ilarity across networks into a flexible clustering model based
on block modeling. The preliminary experimental results
have shown that joint clustering outperforms clustering of
individual networks separately with respect to obtaining bio-
logically meaningful modules. Our future research will focus
on developing more efficient and effective computational
tools for studying large-scale biological networks simultane-
ously so that multiple information resources can be utilized
to compensate potential errors and bias from the existing
curated data sets.
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