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ABSTRACT

In biometric privacy-preserving authentication systems that

are based on key-binding, two terminals observe two corre-

lated biometric sequences. The first terminal selects a secret

key, which is independent of the biometric data, binds this

secret key to the observed biometric sequence and communi-

cates it to the second terminal by sending a public message.

This message should only contain a negligible amount of in-

formation about the secret key, but also leak as little as pos-

sible about the biometric data. Current approaches to real-

ize such biometric systems use fuzzy commitment with codes

that, given a secret-key rate, can only achieve the correspond-

ing privacy-leakage rate equal to one minus this secret-key

rate. However, the results in Willems and Ignatenko [2009]

indicate that lower privacy leakage can be achieved if vector

quantization is used at the encoder. In this paper we study the

use of convolutional and turbo codes applied in fuzzy com-

mitment and its modifications that realize this.

Index Terms— Biometric authentication, privacy, BCH

codes, convolutional codes, turbo codes

1. INTRODUCTION

Privacy problems related to the use of biometric data in var-

ious access control systems have been attracting attention of

the research community for more than a decade. As pointed

out by Schneier [1], an important property of biometric data is

that they cannot be easily canceled and substituted with new

biometrics, as they are unique for individuals. Therefore se-

cure storage and communication of biometric information in

the corresponding access control systems becomes crucial.

Common secret sharing concepts introduced by Maurer

[2] and slightly later Ahlswede and Csiszar [3] play impor-

tant role in biometric systems with template protection, and

set the ground for biometric privacy-preserving authentica-

tion systems based on key-binding or key transmission. In

these systems two terminals observe two correlated biometric

sequences. The first terminal chooses a random secret key,

which is independent of biometrics, and forms a helper mes-

sage based on the observed biometric sequence and the cho-

sen secret. This helper message facilitates reliable reconstruc-

tion of the selected secret key at the second terminal given the

second observation of the biometric sequence. The first ter-

minal here represents enrollment, while the second terminal

performs authentication. The helper data and secret key, en-

crypted using a one-way function, are stored in a biometric

database. We assume the biometric database to be public,

since one cannot guarantee its robustness to outside or inside

attacks. Therefore, to ensure secure system access, the secret-

key rates should be as large as possible and, moveover, the

helper message has to contain only a negligible amount of in-

formation about the secret key. On the other hand, to ensure

privacy, the helper data have to contain as little as possible

information about the biometrics, i.e. the privacy leakage has

to be small. The fundamental trade-offs between secret-key

rates and privacy-leakage rates for this type of systems for

discrete biometric sources were determined in [4], [5], and

for Gaussian biometric sources in [6].

Practical constructions for biometric privacy-preserving

authentication systems based on key-binding include fuzzy

commitment based schemes, proposed by Juels and Watten-

berg [7]. Since fuzzy commitment is designed for binary se-

quences, enrollment and authentication biometric sequences

are binary quantized in such schemes, see e.g. [8]. However,

it was demonstrated in [6], that binary quantization results

into performance loss. Ye et al. [9] considered the Gaus-

sian case and applied scalar multi-level quantization instead

of binary quantization at the encoder side. Moreover, in their

schemes they used soft decision during authentication. There-

fore the resulting scheme improves upon fuzzy commitment

schemes with respect to the secret-key rate.

It should be noted that the above techniques were fo-

cussing on secret-key rates only. As a result fuzzy commit-

ment is not optimal with respect to privacy leakage. Although

Ye et al. [9] did not concentrate on privacy leakage, their

method effects the balance between privacy-leakage and

secret-key rate. The scalar quantization that they used is

not optimal. It was shown in [6] that to achieve the optimal

trade-off vector quantization should be applied.

In this paper we focus on coding schemes for biomet-

ric authentication that control privacy leakage. We assume

that our biometric data sequences are produced by Gaussian

sources, and study the performance of a number of coding
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techniques that can be used in combination with fuzzy com-

mitment and its modifications. We show how fuzzy commit-

ment can be improved by only using quantization of biometric

sequences during enrollment. Moreover, we present a coding

scheme with vector quantization that achieves a better secret-

key vs. privacy-leakage trade-off than fuzzy commitment.

2. BIOMETRIC AUTHENTICATION BASED ON
KEY-BINDING
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Fig. 1. Model for a biometric system with key-binding.

A Gaussian biometric system is based on a Gaussian bio-
metric source {Gρ(x, y), x ∈ R, y ∈ R} that produces an X-

sequence xN = (x1, x2, · · · , xN ) with N real-valued sym-

bols and a Y -sequence yN = (y1, y2, · · · , yN ) also having

N real-valued components. The density corresponding to se-

quence pair (XN , Y N ) is given by

pXN ,Y N (xN , yN ) =

N∏
n=1

Gρ(xn, yn), where (1)

Gρ(x, y) =
1

2π
√
1− ρ2

exp

(
−x2 + y2 − 2ρxy

2(1− ρ2)

)
, (2)

for x ∈ R, y ∈ R, and correlation coefficient |ρ| < 1. Thus,

the pairs {(Xn, Yn), n = 1, · · · , N} are independent of each

other and identically distributed (i.i.d.) according to Gρ(·, ·).
Note that scaling can always be applied to obtain unit X-

variance and unit Y -variance. The signal-to-noise ratio, SNR,

for a virtual channel from X to Y relates to the correlation co-

efficient ρ as
SNR = ρ2/(1− ρ2). (3)

Consider now a Gaussian biometric system with key-

binding, see Fig. 1. In this system a secret key S is chosen

uniformly and independently of biometric sequences from

alphabet {1, 2, . . . , |S|}, thus

Pr{S = s} = 1/|S|, for all s ∈ {1, 2, · · · , |S|}. (4)

The encoder observes the biometric enrollment source se-

quence XN and the secret S and produces helper data M ,

hence M = e(S,XN ), where e(·, ·) is the encoder mapping

and the helper data index is from alphabet {1, 2, · · · , |M|}.
The helper data are assumed to be public.

The helper data M are sent to the decoder that also

observes the biometric authentication sequence Y N . This

decoder forms an estimate Ŝ of the chosen secret, hence

Ŝ = d(M,Y N ), where d(·, ·) is the decoder mapping. The

decoders estimate of the secret also assumes values from

{1, 2, · · · , |S|}.

In this system the helper data are considered to be pub-

lic. Thus, the goal of this system is to transmit the secret

key with negligible error probability and negligible secrecy-

leakage rate, while realizing secret-key rates as large as pos-

sible and privacy-leakage rates as small as possible. This cor-

responds to the following definition of achievability.

Definition 1 In a Gaussian biometric system with key-binding,
a secret-key vs. privacy-leakage rate pair (R,L) with R ≥ 0
is achievable if for all δ > 0 for all N large enough there
exist encoders and decoders such that

Pr{Ŝ �= S} ≤ δ,

log2 |S|/N ≥ R− δ,

I(S;M)/N ≤ δ,

I(XN ;M)/N ≤ L+ δ. (5)

Moreover, let Rρ be the region of all achievable secret-key vs.
privacy-leakage rate pairs.

The characterization of Rρ is given by the following theorem.

Theorem 1 [Key-binding based on Gaussian sources, [6]]

Rρ = {(R,L) : 0 ≤ R ≤ 1

2
log2

(
1

αρ2 + 1− ρ2

)
,

L ≥ 1

2
log2

(
αρ2 + 1− ρ2

α

)
,

for 0 < α ≤ 1}. (6)

Now if we define the rate-leakage function as follows

Rρ(L)
Δ
= max

(R,L)∈Rρ

R, (7)

we can write

Rρ(L) =
1

2
log2

(
1 + SNR

(22L − 1)

22L

)
. (8)

From this function we can see that

lim
L→∞

Rρ(L) =
1

2
log2 (1 + SNR) = I(X;Y ). (9)

Note that I(X;Y ) is the secret-key capacity for our biomet-

ric system, and thus this capacity is achievable at infinitely

large privacy leakage. Therefore, to obtain a biometric system

that has a good control on privacy leakage, one would be in-

terested in operational points (secret-key and privacy-leakage

rate pairs) that have large secret-key to privacy-leakage rate

ratio for a given SNR.

If we rewrite (8) in the following way

SNRmin(R,L) = (22R − 1)
22L

22L − 1
, (10)

we obtain a fundamental limit for biometric authentication.

It gives us the minimal SNR required to achieve reliable key

reconstruction and thus authentication in a biometric system

with given secret-key and privacy-leakage rates.
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3. CODING FOR BIOMETRIC AUTHENTICATION
WITH KEY-BINDING

Now we turn to the problem of selecting a good code that can

realize biometric authentication with privacy protection.

Consider a biometric system whose inputs are biometric

data sequences with Gaussian i.i.d. continuous components.

Here we analyze as an example a biometric source, which is

Gaussian with a target SNR equal to 3. This corresponds to

maximum rate 1. This source produces biometric sequences

of length N = 512. Suppose we need a system that operates

at error probability characterized by a word error rate (WER)

of roughly 0.01. Note that in this case the WER is equivalent

to the false rejection rate (FRR), as WER characterizes the

probability of correct reconstruction of the whole secret key.

3.1. Coding with Binary Quantization at Both Sides

1
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Fig. 2. Fuzzy commitment with BCH codes.

We start with coding for fuzzy commitment, see Fig. 2,

introduced by Juels and Wattenberg [7]. Fuzzy commit-

ment is realization of a biometric system with key-binding

for binary biometric sources. In fuzzy commitment a cho-

sen secret key S is encoded into a codeword using a certain

error-correcting code (ECC) of rate R, and this codeword is

then added modulo-2 to the observed biometric enrollment

sequence. The result is released as helper data. During au-

thentication the decoder observes a biometric authentication

sequence and subtracts it modulo-2 from the helper data. The

result is decoded to a closest codeword in the corresponding

ECC, which leads to the secret key Ŝ.

Since fuzzy commitment operates on binary data, we

have to apply binary quantization to both the enrollment and

authentication sequences. Note that the resulting “channel”

crossover probability is 2
π arctan

√
1−ρ
1+ρ , see [6] for the de-

tails. Now we use the quantized binary sequences in a fuzzy

commitment scheme with a BCH code, see e.g. [10], of

length N = 511 and message length (secret-key length) 31.
This code can correct up to t = 109 errors. If we look at

the biometric system characterization in terms of secret-key

rate and privacy leakage, we see that for this code the (code

and) secret-key rate is R = 31/511 = 0.0607 and the pri-

vacy leakage is L = 480/511 = 0.9393. For these rates

SNRmin(0.0607, 0.9393) = −9.2dB.

Using computer simulations, we see that this BCH code

achieves the target performance of 0.01 at SNR of 4.3dB, see

Fig. 3. Thus fuzzy commitment combined with the BCH code

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
10−3

10−2

10−1

SNR (dB)

W
ER

Fig. 3. Performance of (511, 31, 109) BCH code.

is 13.5dB from optimal. The reason for this poor behavior

can be explained by two effects. Firstly, binary quantization

at two-sides is not optimal and, secondly, a BCH code is not

powerful enough here.

3.2. Binary Quantization at the Encoder Only

In order to improve the performance of fuzzy commitment,

we modify it by applying quantization only at the encoder

side, see Fig. 4.

Then, at first, we use a 16-state non-systematic convolu-

tional code of rate 1/4 with generator polynomials 25, 27, 33,

and 37 (octal). This code has minimum free distance of 16.

For this code we take the trellis length equal to 128, and the

codeword length N = 512. Decoding is performed using the

Viterbi algorithm [11] using soft information based on the se-

quence Y N and the helper data M with metrics m0 = Q((1−
2m)ρy/

√
1− ρ2) and m1 = Q((2m− 1)ρy/

√
1− ρ2), see

[9]. For this system, the secret-key rate is R = 124/512 =
0.2422, while the privacy leakage is L = 388/512 = 0.7578.
Thus SNRmin(0.2422, 0.7578) = −2.1 dB.

The performance of this code is shown in Fig. 5. We

see that now a WER of 0.01 is achieved at SNR = 5.3dB.

Therefore the modified scheme with the convolutional code

is 7.4dB from optimal and 6dB better than fuzzy commitment

with the BCH code. Moreover, observe that now we achieve

a secret-key length four times larger than the one that was

achieved with the BCH code.

Next, we use a parallel-concatenated turbo code of rate

1/3. The constituent codes have 8 states, trellis length of 169,

and we use a 13× 13 block-interleaver. The codeword length

metr.�
�

�
�

�

�

�� � �

�

�

0
1

Y NXN

M ̂SS ⊕CCenc CCviterbi

Fig. 4. Quantization at the encoder only, convolutional codes.
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Fig. 5. Performance of rate 1/4 16-state convolutional code.

here is N = 507, and the secret-key length is 163 bits. De-

coding is performed using turbo decoding with soft informa-

tion based on Y N and M with the same metrics as before.

Now the secret-key rate is R = 163/507 = 0.3215 and the

privacy-leakage rate is L = 344/507 = 0.6785. Thus we

have SNRmin(0.3215, 0.6785) = −0.4 dB.

Computer simulations, see Fig. 6, show that now we need

SNR = 3.9 dB to achieve a WER of 0.01. Thus with turbo

codes we are 4.3dB from the fundamental limit, that is 3.1dB

better than the system with convolutional codes. Also the

secret-key and privacy-leakage rates are improved again.

3.3. Coding with Vector Quantization at the Encoder

Note that all the methods considered before could only realize

secret-key and privacy-leakage pairs for which R + L = 1.
However, the fundamental regions show that it should be pos-

sible to achieve better trade-offs, i.e. with L < 1 − R for a

given R. We have to use vector quantization for this.

Instead of scalar binary quantization, we now apply a

vector quantizer based on a 4-state convolutional code of

rate 2/3. We use Viterbi decoding to find the correspond-

ing codeword for the enrollment sequence XN , followed

by 13 × 13 block-interleaver. The result is added modulo-2

to a codeword produced by a 4-state convolutional code of

rate 1/2. This structure allows for serial iteration, assisted

with the helper data, see Fig. 7. For this system we have

3 3.5 4 4.5
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10−2

10−1

SNR (dB)

W
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Fig. 6. Performance of turbo code of rate 1/3.
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Fig. 7. Vector quantization at the encoder.

the secret-key rate R = 167/507 = 0.3294 and the privacy-

leakage rate L = 173/507 = 0.3412. This pair corresponds

to SNRmin(0.3294, 0.3412) = 1.9dB.

Simulations show that SNR = 7.1dB is required to get a

WER of 0.01, see Fig. 8. Observe that now we are at 5.2dB

from the fundamental limit. Even though we have a slight

degradation comparing to the performance of the system with

the turbo code and binary quantization at the encoder, here we

have a real privacy-leakage controlling system. Observe that

the secret-key rate here is roughly the same as in the system

with the turbo code, but the privacy leakage is almost twice as

low. Thus this approach paves the road to biometric systems

with much smaller privacy leakage than in the current fuzzy

commitment based systems.
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Fig. 8. Performance of the system with vector quantization.

4. CONCLUSIONS

In this paper we considered coding techniques for Gaussian

biometric systems with privacy protection. We proposed the

concept of minimal SNR for a given secret-key and privacy-

leakage rates as a fundamental limit for evaluating the per-

formance of biometric systems. We showed that fuzzy com-

mitment based on a BCH code is 13.5dB from the fundamen-

tal limit. Then we modified fuzzy commitment to incorpo-

rate soft information at the decoder, and used a convolutional

and turbo codes there. Our convolutional code appeared to be

7.4dB from the fundamental limit, while the turbo code only

4.3dB away from it. Next we deployed vector quantization

based on Viterbi decoding at the encoder and a convolutional

code to create a system that is 5.2dB from the fundamental

limit. It is remarkable that this system has privacy-leakage

twice as low as the one achieved with the turbo code.
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