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ABSTRACT
In future wireless communication systems, more and more small
low-power mobile devices will communicate without infrastructure
and internet access. In order to provide a lightweight yet powerful
security mechanism, physical layer parameters can be used to gen-
erate secret keys for perfect secrecy. In this paper, we study the
optimal operation of a multiple antenna link with statistical channel
state information at all nodes for secret key generation. The impact
of spatial correlation on the achievable secret key rates is character-
ized. Furthermore, the optimal pilot precoding during channel esti-
mation is computed. Numerical simulations illustrate the results for
selected scenarios.

1. INTRODUCTION

Secret key generation on the physical layer is an interesting and
promising approach to solve the problem of key exchange in cryp-
tography. The corresponding theory was first introduced by [1] and
[2]. On the physical layer, the secret keys can be generated from
a source of common randomness between two legitimate commu-
nication partners [3]. If an eavesdropper has no access to a (corre-
lated) realization of the random process, the scenario is called source
model [4]. The reconciliation of the generated keys at both partners
occurs over a public channel of infinite capacity [5].

One possible source of common randomness is the fading pro-
cess of the communication channel between the partners. For the
single-antenna case with complex Gaussian channel realizations and
independent Gaussian noise, the secret key rate was computed in
[6]. Recently, the case of secret key agreement in multiple-antenna
(MIMO) channels was investigated [7]. In [8], secret key generation
in spatially correlated MIMO channels was studied.

In this paper, we investigate the key generation from a recipro-
cal and spatially correlated channel for the special case where only
one partner has multiple antennas and all nodes have only statistical
channel state information on the communication link. Contributions
of this paper are:
• We present a closed form solution for the optimal pilot pre-

coding during the channel estimation phase.
• We provide results for the impact of spatial correlation of the

channel on the achievable secret key rate.
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MISO / SIMO Channel:
Kronecker Model
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Fig. 1. Key generation from a reciprocal and spatially correlated
MISO / SIMO channel.

2. PRELIMINARIES

2.1. System and Channel Model

We investigate the secret key generation in a source model with two
legitimate communication partners, Alice and Bob (Figure 1). Their
source of common randomness is the block flat-fading channel be-
tween them. We assume that Alice has nT antennas, whereas Bob
has only one single antenna. Therefore, we have a MISO channel
for the transmission from Alice to Bob and a SIMO channel for
the transmission from Bob to Alice. The spatial correlation of the
channel is modeled with the Kronecker model. The random channel
vector is given by

h = R
1
2
Aw,

where RA � 0 is an (nT × nT ) spatial correlation matrix at Alice
andw is an (nT×1) multi-path channel vector with independent and
identically distributed (i.i.d.) entries which are circularly symmetric
complex Gaussian with zero mean and variance 1. The channel esti-
mation is done in nT + 1 time slots. Alice uses nT time slots with
nT different precoding vectors, which we write as the columns of
the linear precoding matrix Q, to allow channel estimation at Bob.
Afterwards, Bob sends his pilot in one time slot with power p and
Alice estimates the channel. The resulting receive vectors at Bob
and Alice are given by

yB = Q
1
2h+ zB and yA =

√
ph+ zA, (1)

respectively, where zA and zB are complex (nT × 1) noise vec-
tors with i.i.d. circularly symmetric complex Gaussian entries with
zero mean and variance σ2

n, n ∈ {A,B}. The random variables w,
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zA, and zB are modeled statistically independent. Q is a positive
semi-definite (nT × nT ) matrix. Furthermore, we have the power
constraints tr (Q) ≤ PA at Alice and p ≤ PB at Bob. Alice and
Bob have only statistical information about the channel state, i.e.,
the correlation matrix RA is known to them. We assume that the
eavesdropper has no access to the (correlated) channel realizations.

2.2. Secret Key Generation for the Source Model

Alice and Bob generate the keysK and L, which are from the setK.
The reconciliation of the keys occurs over a public channel of infinite
capacity, where the public message from Alice to Bob is denoted by
Φ and the public messages from Bob to Alice by Ψ.

Definition 1 (Definition 1 in [5]). A secret key rate RSK is achiev-
able if for every ε > 0 and sufficiently large block length n, there
exists a public communication strategy such that

Pr [K 6= L] < ε,
1
n

I (Φ,Ψ;K) < ε,
1
n

H (K) < RSK − ε, and
1
n

log2 |K| < 1
n

H (K) + ε.

The secret key capacity in the source model with unlimited pub-
lic discussion is defined as the supremum over all achievable secret
key rates and is given by [3, Corollary 4.1]

CSK = I (yA;yB) . (2)

3. OPTIMAL PRECODING FOR KEY GENERATION

With the receive vectors in (1), we can compute the covariance and
cross covariance matrices

KyB
= E

[
yBy

H
B

]
= Q

1
2RAQ

1
2 + σ2

BI,

KyA
= E

[
yAy

H
A

]
= pRA + σ2

AI, and

KyByH
A

= E
[
yBy

H
A

]
= Q

1
2RA

√
p.

Thus, an achievable secret key rate for the system model in Section
2.1 can be calculated evaluating (2) as

RSK(p,Q) = log2 det
(
Q

1
2RAQ

1
2 + σ2

BI
)

− log2 det

(
Q

1
2R

1
2
A

[
I + p

σ2
A

RA

]−1

R
1
2
AQ

1
2 + σ2

BI

)
.

(3)

We consider the optimization problem

Ropt
SK = max

Q�0, tr(Q)≤PA,
0≤p≤PB

RSK(p,Q).

Obviously, the optimal power allocation at Bob has to minimize the
second term in (3) and is given by p = PB , i.e., we choose the power
as high as possible, and the optimization problem reduces to

Ropt
SK = max

Q�0, tr(Q)≤PA

RSK(PB ,Q). (4)

Lemma 2. The optimization problem in (4) is a convex problem with
respect to the precoding matrixQ.

The constraints in (4) describe a convex set. Additionally, we
rewrite (3) in (4) as

RSK(PB ,Q) = log2 det

(
I + 1

σ2
B

R
1
2
AQR

1
2
A

)
− log2 det

(
I + 1

σ2
B

R
1
2
BQR

1
2
B

)

withRB = R
1
2
A

[
I + PB

σ2
A

RA

]−1

R
1
2
A .

We introduce the representation R
1
2
B = DR

1
2
A . The matrix I −

DDH is positive semi-definite, since it has only non-negative eigen-
values of the form 1− 1

1+(PB/σ
2
A
)λk

, where λk is the k-th eigenvalue
of RA. Therefore, we can apply [9, Lemma C.1] and conclude that
RSK is concave in Q. Consequently, the optimization problem in
(4) is a convex problem.

Remark. The calculation of the MIMO secrecy capacity under an
average power constraint leads to a similar objective function and
optimization problem. This was independently solved in [10], [11].

3.1. Optimal Precoding for Known Correlation

Theorem 3. Let the spatial correlation of the antennas RA be
known by Alice. The eigenvectors of the optimal precoding ma-
trix Q for the optimization problem in (4) diagonalize the spatial
correlation matrixRA, i.e.,

UQ = URA

with the eigenvalue decompositions Q = UH
QΛQUQ and RA =

UH
RA

ΛRAURA . The eigenvalue matrix ΛQ = diag (q1, . . . , qnT )
of the optimal precoding matrixQ is given by the power allocation

qk(µ) =

[
− σ2

Aσ
2
B+λk(σ2

BPB+σ2
A)

2λk(σ2
A
+λkσ

2
B)

+

√
P2
Bσ

4
B

4σ4
A

(
1 + PBλk

σ2
A

)
+

PBσ
2
B

µ log 2σ2
A

]+
,

where λk, k ∈ {1, . . . , nT }, are the eigenvalues of the spatial cor-
relation matrix RA. The waterfilling level µ > 0 is chosen such
that

nT∑
k=1

qk(µ) = PA.

We use the notation q and λ for the vectors of the eigenvalues
qk und λk, k ∈ {1, . . . , nT }, of the precoding matrix Q and the
spatial correlation matrixRA, respectively.

Proof. The proof is given in two steps. First, we show that the opti-
mal Q has the same eigenvectors as RA. Then we give the optimal
power allocation derived with the necessary Karush-Kuhn-Tucker
(KKT) conditions.

First step: Due to the concavity of the secret key rate RSK
(Lemma 2) and the fact that the matricesRA andRB commute, i.e.,
both matrices have the same eigenvectors, we can apply the same
transformation approach as used in the proof of [12, Theorem 5] to
obtain

Ropt
SK = max

qk≥0∑nT
k=1

qk≤PA

RSK(q) with (5)
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RSK(q) =

nT∑
k=1

(
log2

(
1 +

1

σ2
B

λkqk

)

− log2

1 +
1

σ2
B

λk

1 + PB

σ2
A

λk
qk

 .

Second step: We rewrite the secret key rate in (5) to get

RSK(q) =

nT∑
k=1

(
log2

(
1 +

PBλk
σ2
A

+

(
λk
σ2
B

+
PBλ

2
k

σ2
Aσ

2
B

)
qk

)
− log2

(
1 +

PBλk
σ2
A

+
λk
σ2
B

qk

))
.

For convenience, we set

σ2
k = 1 +

PBλk
σ2
A

, αk =
λk
σ2
B

+
PBλ

2
k

σ2
Aσ

2
B

, and βk =
λk
σ2
B

.

The above secret key rate has the form

RSK(q) =

nT∑
k=1

log2

(
σ2
k + αkqk
σ2
k + βkqk

)
. (6)

The secret key rate RSK in (6) is concave in q, since the Hessian
matrix with respect to q is diagonal with only non-positive diagonal
entries

∂2RSK(q)

∂q2k
=

nT∑
k=1

σ4
k

(
β2
k − α2

k

)
+ 2αkβkσ

2
kqk (βk − αk)

(αkqk + σ2
k)2 (βkqk + σ2

k)2 log 2

and, consequently, negative semi-definite. Note, that with αk =

βk +
PBλ

2
k

σ2
A
σ2
B

we have αk ≥ βk. Hence, the KKT conditions are
necessary and sufficient. We solve the optimization problem using
the Lagrangian function

L (q, µ,ν) = CSK(q) +

nT∑
k=1

qkνk + µ

(
PA −

nT∑
k=1

qk

)
.

Taking the first derivative of the Langrangian function with respect
to qk, the power allocation satisfies

σ2
k (αk − βk)

log 2 (σ2
k + αkqk) (σ2

k + βkqk)
= µ− νk (7)

with νkqk = 0 and µ > 0. The left-hand-side of the equation is
always positive, as αk ≥ βk, and therefore we have qk > 0 always
fulfilled, i.e., νk = 0. If we resubstitute αk, βk and σ2

k into (7), and
solve the equation for qk, we obtain the result in Theorem 3.

The secret key rate RSK in (6) is monotonically increasing in
each qk, which follows from the non-negativity of the first derivative
of RSK with respect to qk. Thus, the power constraint at Alice has
to be fulfilled with equality.

3.2. Special Case: No Spatial Correlation

For the case, where we have no spatial correlation between the chan-
nels, i.e.,RA = I , the secret key rate is given by

RSK (q) =

nT∑
k=1

log2

(
1 +

PBσ
2
Bqk

σ2
B (σ2

Bσ
2
A + PBσ2

B + qkσ2
A)

)
.

The secret key rate RSK is symmetric and concave in q and
therefore, RSK is Schur-concave [13, Proposition 2.8] and the max-
imum is achieved for equal power allocation q = PA

nT
1 � q for

any q, where 1 is an (nT × 1) vector with all elements being 1.
Without loss of generality, we can set σ2

A = σ2
B = 1 and obtain the

maximum secret key rate

RSK
(
PA
nT
1
)

= nT log2

(
1 +

PB
PA
nT

1 + PB + PA
nT

)
. (8)

Corollary 4. For a growing number of antennas, the secret key rate
RSK in (8) approaches

lim
nT→∞

RSK
(
PA
nT
1
)

=
PAPB

(PB + 1) log 2
.

3.3. Special Case: Without Precoding

We can analyze the influence of the spatial correlation at Alice, if we
omit the precoding and setQ = PA

nT
I . With equal power allocation,

the secret key rate is given by

RSK(λ) =

nT∑
k=1

log2

1 +
λ2
k

σ2
A
PB

σ2
B
nT

PA
+

σ2
B
nT

PA
λk +

σ2
A
PB
λk

 .

If we choose PA and PB such that the inverted SNR at Alice and
Bob is equalized, i.e., σ

2
BnT

PA
=

σ2
A
PB

=: ρ, we obtain the secret key
rate

RSK(λ) =

nT∑
k=1

log2

(
1 +

λ2
k

ρ (ρ+ 2λk)

)
.

We can observe the same behavior as in [8]: For all SNR ρ−1 ≤√
1/2 ≈ 1.5 dB, the secret key rate RSK(λ) is Schur-convex and

the maximum secret key rate is achieved for λ = [nT , 0, ..., 0]. This
means, that for small SNR, the secret key rate is higher if the channel
is completely correlated. For high SNR, the secret key rate decreases
with increasing correlation, even though we cannot prove the formal
statement of Schur-concavity.

4. NUMERICAL RESULTS

In this section, we illustrate the performance of the optimal power
allocation (OPA) given in Theorem 3 compared to an equal power
allocation (EPA) scheme. For all simulations, we set σ2

A = σ2
B = 1

and the power at Bob is fixed to PB = 10. The spatial correlation
matrix RA is a Toeplitz matrix with elements ξ|i−j|, i.e., it has the
form

RA =


1 ξ ··· ξnT −2 ξnT −1

ξ 1 ξ ··· ξnT −2

...
. . .

. . .
. . .

...
ξnT −2 ··· ξ 1 ξ

ξnT −1 ξnT −2 ··· ξ 1


with 0 ≤ ξ ≤ 1 being the level of spatial correlation between the
antennas, where ξ = 0 represents no correlation and ξ = 1 the
complete correlation.

In Figure 2, the two-antenna case is presented.We compare the
secret key rates RSK over the SNR for the cases of almost complete
correlation, i.e., ξ = 0.9, and no correlation, i.e., ξ = 0. For the case
of no correlation (solid curve with triangles), the power is allocated
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Fig. 2. Secret key rate over SNR for nT = 2 transmit antennas at
Alice with different levels of correlation and fixed power PB = 10
at Bob.

equally, as described in Section 3.2. If the antennas are correlated,
we need to apply the result from Theorem 3 in order to generate
an optimal pilot precoding. For the low SNR regime, the resulting
secret key rate with OPA (solid curve) is superior to the rate achieved
by EPA (dashed curve) and even better than the rate for uncorrelated
antennas. In the high SNR regime, the secret key rate achieved by
OPA approaches the rate achieved by EPA, while we gain a much
better rate without correlation.

The case with four antennas is presented in Figure 3. We com-
pare the secret key rates for ξ = 0.1 and ξ = 0.8 achieved by EPA
and OPA. We can observe a similar behavior to the one found in the
two-antenna case. If the antennas are spatially correlated, the OPA
scheme (solid curves) performs better in the low SNR regime than
the EPA scheme (dashed curves). If there is almost no correlation,
i.e., ξ = 0.1, the optimal power allocation tends to the equal power
allocation.

This behavior can be seen again in Figure 4 for nT = 8 transmit
antennas and small values of ξ, i.e., a low level of spatial correlation.
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