
AN INTERACTIVE AUDIO SOURCE SEPARATION FRAMEWORK BASED ON
NON-NEGATIVE MATRIX FACTORIZATION

Ngoc Q. K. Duong, Alexey Ozerov, Louis Chevallier, and Joël Sirot
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ABSTRACT
Though audio source separation offers a wide range of applica-

tions in audio enhancement and post-production, its performance has
yet to reach the satisfactory especially for single-channel mixtures
with limited training data. In this paper we present a novel inter-
active source separation framework that allows end-users to provide
feedback at each separation step so as to gradually improve the re-
sult. For this purpose, a prototype graphical user interface (GUI)
is developed to help users annotating time-frequency regions where
a source can be labeled as either active, inactive, or well-separated
within the displayed spectrogram. This user feedback information,
which is partially new with respect to the state-of-the-art annota-
tions, is then taken into account in a proposed uncertainty-based
learning algorithm to constraint the source estimates in next sep-
aration step. The considered framework is based on non-negative
matrix factorization and is shown to be effective even without using
any isolated training data.

Index Terms— Interactive audio source separation, non-
negative matrix factorization, uncertainty-based learning, time-
frequency annotation, user feedback.

1. INTRODUCTION

Audio source separation still remains a very hot research topic
even there has been a surge of research over the past years [1].
In fact, separation performance that can be achieved by state-of-
the-art algorithms is far from satisfactory in certain scenarios such
as under-determined mixtures of reverberated sources. In single-
channel case, where spatial information about the sources cannot
be exploited, the problem becomes even harder and usually relevant
training data is needed to first learn the spectral characteristics of
individual sources. Such a class of supervised algorithms is mostly
based on non-negative matrix factorization (NMF) [2, 3], or its
probabilistic formulation known as probabilistic latent component
analysis (PLCA) [4, 5]. However, when training examples are un-
available (or not representative enough) these methods can not be
applied without other prior information about the sources. Examples
of such prior information include ”hummed” sounds that mimic the
ones in the mixture [6], or text transcriptions of the corresponding
speech sources [7].

So called user-guided approaches based on NMF have been pro-
posed recently. These approaches allow end-user to manually an-
notate information about activity of each sound source, e.g. if it is
active or not, in time [8] or time-frequency (T-F) [9] domains. The
annotated source activity information is then used, instead of train-
ing data, to guide the separation process. Another user-guided ap-
proach based on independent vector analysis, which allows user to

tune temporal power variations of sources, was also presented in
[10]. Though prior work has shown the effectiveness of such al-
gorithms, the results are still far from perfect especially in mixing
scenarios with strong overlapping sources. A more advanced in-
teractive framework based on PLCA was proposed by Bryan et al.
[11] whereby overall separation process comprises several interac-
tive separation steps (if needed). At each step, end-user can perform
T-F annotation on the spectrogram displays of intermediate sepa-
ration results, in addition to the annotation on the spectrogram of
the mixture itself. Note that in contrast to [8, 9], where the anno-
tations are specified only once, interactive approach in [11] allows
user feedback at each separation step so as to gradually improve the
result by correcting remaining errors.

Motivated by the effectiveness of both the user-guided algo-
rithms [8, 9] and the interactive strategy [11]1, we present in this
paper an interactive source separation approach based on a novel
NMF formulation. The proposed approach can efficiently handle
user feedback information at each separation step, and is robust to er-
rors in the annotations thank to the derived uncertainty-based learn-
ing algorithm for parameter estimates. In addition to the T-F annota-
tion about the source activity considered in the existing algorithms,
we introduce a new type of annotation about the quality of the sep-
arated sources: user can validate if a source is well-separated in
certain T-F regions. These well-separated regions can then be effec-
tively exploited, as sort of training data, in our formulation to better
constrain parameter estimates in next separation step.

The rest of the paper is organized as follows. In Section 2 we
summarize the NMF model for source separation and a baseline pa-
rameter estimate exploiting temporal annotation as in [8]. This base-
line can serve as the first separation step in our interactive frame-
work. Main contributions of the paper are described in Section 3
where the T-F annotations via a GUI are introduced followed by the
proposed optimization algorithm and a global description of the in-
teractive system. We conduct experiments to validate the effective-
ness of the proposed approach in Section 4. Finally we conclude in
Section 5.

2. NMF MODEL AND BASELINE PARAMETER UPDATE

2.1. Model

Let xfn and sj,fn be the short-time Fourier transform (STFT) coef-
ficients of the observed single-channel mixture signal and the con-

1This approach obtained better objective separation result compared
to other submissions in ”Professionally produced music recordings”
task of the Signal Separation Evaluation Campaign (SiSEC2013):
http://www.onn.nii.ac.jp/sisec13/evaluation_
result/MUS/testMUS2013.htm
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tribution of j-th source signal, respectively, at frequency bin f and
time frame n. The mixing model writes

xfn =
∑J

j=1
sj,fn, (1)

where J is the total number of sources, f = 1, . . . , F and n =
1, . . . , N . Defining the power spectrogram of the mixture by vfn =
|xfn|2, NMF aims at approximately factorizing the F × N matrix
V = {vfn}fn as V ≈ V̂ = WH, where W and H are non-
negative matrices of size (F ×K) and (K ×N), respectively. As-
suming that the source STFT coefficients follow zero-mean Gaussian
distribution sj,fn ∼ Nc(0, v̂j,fn) where v̂j,fn = [W(j)H(j)]fn,
W(j) and H(j) are matrices of size (F × Kj) and (Kj × N), re-
spectively, modeling the contribution of the j-th source. With linear
model v̂fn =

∑
j v̂j,fn [3], we can write W = [W(1), . . . ,W(J)]

and H = [HT
(1), . . . ,H

T
(J)]

T .

2.2. Baseline parameter update exploiting temporal annotation

NMF parameters can be estimated in the maximum likelihood (ML)
sense, which is equivalent to minimizing the following cost function
[3]

C1(θ) =
∑
fn

dIS (vfn|v̂fn) , (2)

where θ = {W,H} being the NMF parameters, and dIS (·|·) de-
notes Itakura-Saito (IS) divergence. The well-known multiplicative
update (MU) rules for parameter estimation write:

H← H�
WT

(
(WH).−2 �V

)
WT (WH).−1 (3)

W←W �
(
(WH).−2 �V

)
HT

(WH).−1 HT
(4)

where � denotes the Hadamard entrywise product, A.p being the
matrix with entries [A]pij , and the division is entrywise.

Considering the baseline user-guided approach [8], parameter
estimation is guided by temporal annotation where user is asked to
indicate time segments along the mixture where each source is ac-
tive. This temporal annotation is then reflected in the initialization
of the activation matrix H: when j-th source is not annotated by
”active” at time frame n, the n-th column of H(j) is initialized by
0 and it will not be changed via the multiplicative update. Note
that this temporal annotation is much easier and faster than the de-
tail time-frequency annotation considered in [9, 11] as well as later
part of the paper. Thus, with the absence of isolated training sounds,
this baseline can serve as the first separation step in our interactive
framework.

2.3. Source reconstruction

Given the estimated parameters θ = {W,H}, the source STFT
coefficients are computed by Wiener filtering as

ŝj,fn =
v̂j,fn
v̂fn

xfn, (5)

then the time domain source estimates are obtained via the inverse
STFT.

3. PROPOSED INTERACTIVE SEPARATION
ALGORITHM

We first present all types of the considered time-frequency annota-
tions, which would bring benefit to the separation process, in Section
3.1. We then propose an uncertainty-based learning algorithm that
allows to efficiently incorporate all annotated information to con-
strain parameter estimates in interactive separation steps in Section
3.2.

3.1. Time-frequency annotations

In order to support the annotation task, we developed a prototype
user interface enabling user to select T-F regions (either in rectangle
or polygon shapes) in the spectrogram display (either in linear or
logarithmic frequency scale) of the mixture as well as the separated
sources. This GUI is visualized in Fig. 1. Given a selected T-F
region, and possibly by hearing the corresponding sound, end-user
can assign to each source one of the following labels:

(i) source is active (default label),

(ii) source is inactive,

(iii) source is well-separated.

Fig. 1. GUI for user annotation. Piano sound is labeled as well-
separated in the current selected polygon region (in blue) where
phone-ring sound labeled as is inactive. User also annotated that
speech is active alone (i.e. all the other sources are inactive) in the
rectangle region (in yellow).

While annotation (i) and (ii) have been addressed in [9, 11], an-
notation (iii) is new. We find that this type of information is inter-
esting because first, the well-separated T-F regions should be con-
strained so as they will not be accidently damaged due to the chang-
ing of parameters in next separation steps. Second, and even more
important, these regions can be used, as sort of input training data,
to help better estimating the model parameters of the corresponding
source.
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3.2. Interactive parameter update exploiting T-F annotations

We derive an optimization algorithm addressing two challenges: (1)
how to use annotated T-F regions to learn NMF models, and (2) how
to handle errors in the annotation. While the former can be solved in
the same way as in [9], the latter is more difficult. Also, the latter is
crucial so as to account for the well-separated regions where artifacts
and interferences still remain from the previous separation step2. To
fulfil this challenge, we exploit uncertainty-based learning [12, 13]
where source models can be learned from the source estimates, while
taking into account separation errors described by their variances.
The principle is summarized as follow. Within the above-mentioned
Gaussian assumption, the posterior of j-th source writes [12]

p(sj,fn|xfn;θ) = Nc

(
sj,fn; ŝj,fn,

v̂j,fnv̂j̄,fn
v̂fn

)
, (6)

where v̂j̄,fn = v̂fn − v̂j,fn and ŝj,fn is the reconstructed source
from Wiener filtering (5), which can be then written as

ŝj,fn = sj,fn + bj,fn, (7)

where bj,fn ∼ Nc(0, v̂j,fnv̂j̄,fn/v̂fn) is source estimation error.
Estimating the NMF model for j-th source from (7) in the ML sense
can be shown to be equivalent to minimizing the following cost [12]

C2(θ) =
∑
j,fn

dIS (ṽj,fn|v̂j,fn + ẽj,fn) , (8)

where ṽj,fn = (v̂j,fn/v̂fn)
2vfn and ẽj,fn = v̂j,fnv̂j̄,fn/v̂fn are

computed from model parameters estimated at the previous separa-
tion step and fixed at current estimation step. It can be seen that this
parameter estimation takes into account both posterior mean ŝj,fn
and posterior variance ẽj,fn characterizing source reconstruction er-
ror.

The cost (8) is now used to account for the annotated T-F regions
in our framework. Combining (2) and (8), the overall proposed cost
function to be optimized for interactive parameter estimates is

C3(θ) =
∑
fn

dIS (vfn|v̂fn)+
∑
j,fn

λj,fndIS (ṽj,fn|v̂j,fn + ẽj,fn) ,

(9)
where λj,fn, ṽj,fn and ẽj,fn are defined, for each source j at each
time-frequency point (f, n), according to the T-F annotations as:

(λj,fn, ṽj,fn, ẽj,fn) =

=


(a, 0, 0) if j is inactive,
(b, vfn, 0) if j is active alone,(
c,
(

v̂j,fn

v̂fn

)2

vfn,
v̂j,fnv̂j̄,fn

v̂fn

)
if j is well-separated,

(0,any,any) otherwise.
(10)

where positive constants a, b, and c determine contributions of dif-
ferent annotation types, any means any value, and a source is active
alone when all other sources are labeled as inactive. Note that all
parameters v̂j,fn, v̂fn, and v̂j̄,fn in (10) are computed from the pre-
vious separation step and fixed in current interactive step. Further
explanation for the quantities in (10) is as follow. When a source is
labeled as inactive or active alone, its corresponding separation error

2Though well-separated regions are validated by end-user via listening,
they are usually not error-free. Indeed, artifacts and interferences still exist
in these regions, but they are simply masked by the target source.

variances ẽj,fn are set to zero, while ṽj,fn should be equal to either
zero or the mixture power spectrum vfn, respectively. Besides, if a
source is already well-separated in certain regions, its correspond-
ing STFT coefficients should be constrained to keep values from the
previous separation step and not to vary greatly.

Let Λ(j), Ṽ(j) and Ẽ(j) the F ×N matrices characterizing the
T-F annotations for j-th source with, respectively, λj,fn, ṽj,fn and
ẽj,fn as entries. Using general principle from [3] we derived MU
rules to minimize (9) and the resulting parameter updates are as fol-
lows:

H(j) ← H(j) �

WT
(j)

((
WH

).−2 �V + Λ(j)�(
W(j)H(j) + Ẽ(j)

).−2

� Ṽ(j)

)
WT

(j)

((
WH

).−1
+ Λ(j)�(

W(j)H(j) + Ẽ(j)

).−1
)

(11)

W(j) ←W(j) �

((
WH

).−2 �V + Λ(j)�(
W(j)H(j) + Ẽ(j)

).−2

� Ṽ(j)

)
HT

(j)((
WH

).−1
+ Λ(j)�(

W(j)H(j) + Ẽ(j)

).−1
)

HT
(j)

(12)

3.3. Overall system description

Following the baseline separation step summarized in Section 2.2
and the proposed interactive refinement steps with user’s T-F anno-
tations introduced in Section 3.2, this section summarizes the global
workflow of the overall system. For clarity, all steps in the proposed
interactive framework are presented in Algorithm 1.

Note that all T-F annotations in interactive separation steps are
kept in the memory and will be reused, together with new annota-
tions, in next separation step.

4. EXPERIMENTS

We first evaluated the source separation performance of the proposed
approach over four single-channel mixtures of different male and fe-
male speeches (extracted from TIMIT database) with different back-
ground sounds (piano chords, drums, and phone ring). The mixtures
were 23 second long, sampled at 16 kHz, and articially mixed at 0
dB SNR. In each mixture speeches (either male or female voices)
and background sounds appear alone during about three seconds so
that temporal annotation was well-exploited to guide the parameter
estimates in the first separation step.

We compared separation result of the derived interactive ap-
proach after the first separation step (named Int-SS-1) with that ob-
tained after the second separation step when the proposed annota-
tion about the quality of separated sources, i.e. well-separated T-F
regions, is either not used (named Int-SS-2) or used (named Int-SS-
3). The time-frequency annotation was performed by one of the au-
thor who has experience on sound processing. Note that Int-SS-1
is equivalent to the user-guided algorithm [8] where only tempo-
ral annotation was used, and Int-SS-2 is comparable to the state-
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Algorithm 1 Global workflow of the proposed interactive source
separation algorithm.

1. User listens to the mixture and roughly annotate temporal
segments where each source is active

2. Randomly initialize NMF parameters {W(j),H(j)}j , then
set n-th column of H(j) to 0 if j-th source is inactive at time
frame n (see Section 2.2)

3. Perform first source separation step: parameters are alternat-
ingly updated by (3) and (4) until convergence, then sources
are reconstructed by Wiener filtering (see Section 2.3)

4. User evaluates the separation performance. Stop separation
process when the result is satisfied, otherwise:

5. User performs the detailed T-F annotations (see Section 3.1)

6. Construct the F × N nonnegative matrices Λ(j), Ṽ(j) and
Ẽ(j) for all source j from all the T-F annotations as (10)

7. Initialize NMF parameters similarly to step 2

8. Perform interactive source separation step: parameters are al-
ternatingly updated by (11) and (12) until convergence, then
sources are reconstructed by Wiener filtering

9. Go to step 4.

of-the-art interactive method [11] though the former is formulated
based on NMF while the later uses PLCA. For parameter estima-
tion, the number of MU iterations was set to 100 for all separation
steps, Kj = 20, j = 1, 2, and the NMF parameters W(j),H(j)

were re-initialized, in the second separation step, in the same way
as they were initialized in the first step. We observed that this re-
initialization brings slightly better result than initializing directly by
the parameters obtained after MU iterations in the first separation
step. The trade-of parameters a, b, and c are set manually between 1
and 10.

Approach SDR SIR SAR
Int-SS-1 (comparable to [8]) 8.9 16.0 13.1

Int-SS-2 (comparable to [11]) 9.8 16.8 13.1
Int-SS-3 (proposed) 10.2 17.4 13.3

Table 1. Average source separation performance.

Separation performance was evaluated using the signal-to-
distortion ratio (SDR) criterion measuring overall distortion, as
well as the signal-to-interference ratio (SIR), and signal-to-artifact
ratio (SAR) criteria [14], measured in dB, averaged over all sources,
and shown in Table 1. As expected, performing source separation
interactively even with only one user-feedback step (Int-SS-2 and
Int-SS-3) significantly improves the result, i.e. in terms of SDR and
SIR, compared to the baseline (Int-SS-1). This is because some
interferences remained in separated sources from the first separation
step, which were annotated by user, were successfully removed in
the second step. Besides, it is worth noticing that Int-SS-3 improves
the SDR, SIR, and SAR by 0.4 dB, 0.6 dB, and 0.2 dB, respectively,
compared to Int-SS-2. This result confirms the effectiveness of
our proposed well-separated annotation. In addition to the above
synthetic mixtures, we have also tested the proposed approach on
a twelve minute real-world sound track of Beverly Hills drama se-
ries for the separation of dialogs (speeches from main actors and

actresses) and background sounds (music, environmental noise,
footstep, etc). Due to the lack of groundtruth signals for objective
evaluation, informer listening has confirmed the quality of separated
sources after two interactive steps with about ninety minutes of
manual annotation.

5. CONCLUSION

In this paper, we have presented a novel interactive source separa-
tion framework based on NMF formulation. The proposed approach
efficiently exploits a new type of user annotation about the quality
of the estimated sources, in addition to the existing T-F annotations
about the contributions of the sources to the mixture spectrogram,
to further constrain the parameter estimates in interactive separation
steps. Preliminary experiments with both simulated and real-world
mixtures confirm the effectiveness of the derived algorithm. Future
research would be devoted to learn an automatic or semi-automatic
annotation algorithm so as to reduce manual effort and fasten anno-
tation time.
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