
FAST SEGMENT SEARCH FOR CORPUS-BASED SPEECH ENHANCEMENT
BASED ON SPEECH RECOGNITION TECHNOLOGY

Atsunori Ogawa, Keisuke Kinoshita, Takaaki Hori, Tomohiro Nakatani and Atsushi Nakamura

NTT Communication Science Laboratories, NTT Corporation
{ogawa.atsunori, kinoshita.k, hori.t, nakatani.tomohiro, nakamura.atsushi}@lab.ntt.co.jp

ABSTRACT

Corpus-based speech enhancement has received increasing attention
recently since it shows high enhancement performance in highly
non-stationary noisy environments by precisely modeling the long-
term temporal dynamics of speech. However, it has a disadvan-
tage in that the cost is very high for searching the longest matching
clean speech segments from a multi-condition parallel speech cor-
pus. This paper proposes a fast segment search method for corpus-
based speech enhancement. It is mainly based on two techniques de-
rived from speech recognition technology. The first is an A∗ search
like segment evaluation function for accurately finding the longest
matching segments. The second is a tree and linear connected search
space for efficiently sharing the segment likelihood calculations. In
the experiments for non-stationary noisy observations using the 26
multi-condition TIMIT parallel speech corpus, the proposed search
method found the segments almost in real-time without degrading
the quality of the enhanced speech. Our method was about 7 to 13
times faster than the conventional segment search method.

Index Terms— Corpus-based speech enhancement, fast seg-
ment search, longest matching segments, speech recognition tech-
nology

1. INTRODUCTION

Speech enhancement is an essential technology for significantly im-
proving the quality of speech-based applications, e.g. conversations
over mobile phones and voice command inputs to car navigation sys-
tems, in adverse environments. And a lot of effort has been expended
over many years on developing various types of effective speech en-
hancement approaches [1]. Among them, single-channel approaches
have been the most actively studied, e.g. [1–14]. And they can be
categorized primarily into two types with different advantages and
disadvantages.

The first category consists of common and widely used filtering-
based approaches that estimate noise statistics, typically, the noise
power spectral density (PSD), e.g. [1–8]. And the estimated statis-
tics are used to filter out the noise component from a noisy observa-
tion. If the noise is stationary, it is possible to estimate its statistics
using the non-speech period of the observation (e.g. at the begin-
ning of a recording session) [1, 2]. However, in many applications,
the noise statistics can vary over time, and thus they must be tracked
continuously. Many noise tracking approaches have been proposed,
e.g. the minimum statistics approach [3, 4], the minima-controlled
recursive averaging [5, 6], the minimum mean-square error based
noise PSD estimator [7], and the recursive expectation-maximization
algorithm [8]. The advantage of these approaches is their reason-
able computational complexity. The accuracy of the noise tracking,
and thus the quality of the enhanced speech, has been steadily im-
proved with these approaches. However, the tracking of highly non-
stationary noise remains as a very difficult task.

The second category consists of the recently proposed corpus-
based (e.g. [9, 10]) and inventory-style (e.g. [11, 12]) approaches. In

contrast to the approaches in the first category, these approaches fo-
cus strongly, not on the estimation of the noise statistics, but on the
direct estimation of the underlying clean speech component. For ex-
ample, the corpus-based approach proposed in [9,10] can be outlined
as follows. First, a multi-condition parallel speech corpus and the
corresponding segment models are prepared to capture the precise
long-term temporal dynamics of speech. Then, given a noisy obser-
vation, using the segment models, the longest matching clean speech
segments to the noisy input are found. Finally, by concatenating the
found segments, clean speech is resynthesized. By compensating for
the noise component in a noisy observation using the multi-condition
parallel speech corpus, the approach can focus solely on the estima-
tion of the underlying clean speech component. In addition, based on
the longest matching property in the segment search, it can robustly
find the correct clean speech segments that match the noisy input.
In fact, this approach has exhibited high enhancement performance
in highly non-stationary noisy environments [9, 10]. However, these
types of approaches have an obvious disadvantage in that the cost of
searching for the matching segments is very high [13, 14].

In this paper, we propose a fast segment search method for
corpus-based speech enhancement. We assume the framework pro-
posed in [9, 10] (described in Section 2.1). In these references,
however, there is only a limited discussion of the acceleration of the
segment search and their effect is not revealed concretely. In [9,10],
a segment evaluation function is defined that has the longest match-
ing property (Section 2.2). In contrast, we propose another segment
evaluation function, which is derived from the A∗ search technique
in speech recognition technology and also has the longest match-
ing property (Section 3.1). It is simpler and mathematically more
rigorous than the conventional function and can find the segments
accurately. In [9, 10], the segment search is conducted in an un-
structured search space. In contrast, we introduce a tree and linear
connected search space that is derived from the tree lexicon also
employed in speech recognition (Section 3.2). Based on an analysis
of the segment variations, the search space is designed to efficiently
represent the speech corpus (i.e. the collection of segments). And by
using this structured search space, the segment likelihood calcula-
tions can be efficiently shared. In the experiments for non-stationary
noisy observations using the 26 multi-condition TIMIT parallel
speech corpus, the proposed search method found the segments
almost in real-time without degrading the quality of the enhanced
speech (Section 4). Our method was about 7 to 13 times faster than
the conventional segment search method.

2. CORPUS-BASED SPEECH ENHANCEMENT
This section briefly describes the basic framework of the corpus-
based approach proposed in [9, 10] using Fig. 1 and details its con-
ventional segment search method.

2.1. Basic Framework
In the training stage (top dotted box in Fig. 1), a clean speech corpus
is first prepared. It is artificially contaminated with various types
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Fig. 1. Basic framework of corpus-based speech enhancement.

of noise to form a multi-condition parallel speech corpus. Feature
(e.g. Mel-Frequency Cepstral Coefficient: MFCC) extraction is con-
ducted for all of the speech corpora (as for the clean corpus, the
magnitude spectra are also extracted). Using the extracted features,
GMMs that represent each of the corpora are trained. To represent
the precise spectral patterns of speech, the number of Gaussian com-
ponents in each GMM is set large (e.g. 4096). And using these
GMMs, segment models can be obtained (detailed in Section 2.2).

Then, given an input noisy speech, we first extract its feature,
magnitude spectrum and phase spectrum sequences. Using the seg-
ment models, we can find the longest matching segment sequence to
the input noisy speech with the segment posterior probabilities. The
noise component in the noisy input can be compensated by using the
multi-condition parallel corpus. However, the computational cost of
this segment search is very high (detailed in Section 2.2).

Using the found matching segment sequence and the segment
posterior probabilities, we resynthesize a clean magnitude spectrum
sequence by concatenating the corresponding clean speech magni-
tude spectra. Finally, we perform Wiener filtering using the resyn-
thesized clean magnitude spectrum sequence and the magnitude and
phase spectrum sequences extracted from the input noisy speech to
obtain the final enhanced speech.

2.2. Conventional Segment Search Method
Hereafter, for simplicity, we assume a single speech corpus (the ex-
periments in Section 4 are conducted using a multi-condition parallel
corpus) and that all the utterances in the corpus are concatenated into
one long utterance. We employ the notations used in [9, 10].

We start with the training stage. Let x = {xi : i = 1, 2, . . . , I}
be the whole feature sequence in a speech corpus, xi be the feature
at time frame i, and I be the total number of frames in the corpus.
Using x, a GMM G can be trained as

G = {g(x|m), w(m) : m = 1, 2, . . . ,M}, (1)

where g(x|m) is the m-th Gaussian component, w(m) is the corre-
sponding weight, and M is the total number of Gaussian components
in G. Using G, we can obtain a model that represents the patterns
of the temporal dynamics contained in the corpus x. That is, for
each time frame i, we find the Gaussian component m in G that
maximizes the likelihood of the feature xi. This results in a time
sequence of maximum-likelihood Gaussian component indices as

m = {mi : i = 1, 2, . . . , I}, (2)

where mi is an index addressing a Gaussian component g(x|mi)
in G. g(x|mi) represents a class of short-time speech spectra, and
thus, m can be used as a spectral-temporal model of the corpus x.
We refer to this model as the segment model.

Now, we describe the segment search. Let y = {yt : t =
1, 2, . . . , T} be a T frame feature sequence of a noisy speech input

and yt be the feature at time frame t. Hereafter, again for simplicity,
we add a constraint that only allows the one-to-one frame basis linear
matching (i.e. does not allow the elastic matching, e.g. dynamic
programming (DP) or dynamic time warping) during the matching
between y and m (see [9, 10] for details). With this constraint, let
yt:t+τ = {yε : ε = t, t + 1, . . . , t + τ} be an input segment taken
from the time frames t to t + τ of y and mu:u+τ = {mi : i =
u, u+1, . . . , u+ τ} be a corpus segment taken from time frames u
to u+ τ of m. Then, at each time frame t in y, we can find an input
segment yt:t+τmax and the corresponding matching corpus segment
mt

u:u+τmax
by maximizing the posterior probability as

mt
u:u+τmax

= argmax
τ

max
mu:u+τ

P (mu:u+τ |yt:t+τ ), (3)

P (mu:u+τ |yt:t+τ )

=
p(yt:t+τ |mu:u+τ )∑

u′ p(yt:t+τ |mu′:u′+τ ) + p(yt:t+τ |φt:t+τ )
, (4)

where P (mu:u+τ |yt:t+τ ) is the posterior probability that has an
important characteristic; It favors longer matching, i.e. a larger τ ,
between yt:t+τ and mu:u+τ . So the longer the matched segment
length is, the higher the posterior probability becomes (the proof is
given in [10]). This property is important since longer speech seg-
ments can be identified more accurately in noisy environments than
shorter segments because of their more distinct and richer spectral-
temporal pattern information.

The numerator of Eq. (4) is the likelihood of the input segment
yt:t+τ given the corpus segment mu:u+τ and is calculated as

p(yt:t+τ |mu:u+τ ) =
τ∏

ε=0

g(yt+ε|mu+ε), (5)

where we assume the conditional independence of the adjacent
frames. The denominator of Eq. (4) has two terms. The first term is
a collection consisting of all the corpus segments, which are taken
from all the possible segment locations (i.e. u′), and that are likely
to match the given input segment yt:t+τ . The second term is the
likelihood of yt:t+τ given the corpus GMM G and is calculated as

p(yt:t+τ |φt:t+τ ) =

τ∏
ε=0

[
M∑

m=1

w(m)g(yt+ε|m)

]
, (6)

where the sum inside the brackets is the GMM-based likelihood for
the feature yt+ε (see [9, 10] for the meaning of this term).

In the implementation of the segment search at time frame t in
y (i.e. the way to solve Eq. (3), top of Fig. 2), we first set τ = 0
and find the most probable segment of length 1 in the corpus x. We
repeat this procedure while increasing τ by 1 until it reaches the
previously determined maximum limit value τlim (e.g. τlim = 29).
After obtaining the most probable corpus segment for each τ , we
find the maximum matching segment with τmax (0 ≤ τmax ≤ τlim),
that should result in the maximum posterior probability.

The conventional segment search method described above has
two main problems. The first is that, when finding the maximum
matching corpus segment, it compares the posterior probabilities be-
tween the candidate segments of different lengths (i.e. 1 to τlim+1).
This comparison does not appear to be mathematically rigorous. In
addition, the proof of the longest matching property given in [10] is
rather complex. The second problem is purely concerned with the
computational cost. The number of possible segment locations (i.e.
u) in the corpus x is I , i.e. the total number of frames in the corpus.
If I is large (and actually it is large), it is obvious that the cost of
likelihood calculations for all the possible locations becomes very
high (despite introducing the caching of once calculated Gaussian
component likelihoods at each time frame t in y). In [10], the prun-
ing of unlikely segment hypotheses (locations) is introduced while
increasing τ . Nevertheless, at least for the first frame (i.e. τ = 0) of
each search, all the I possible locations must be considered.
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3. PROPOSED SEGMENT SEARCH METHOD
To address the two problems with the conventional segment search
method, we propose the following two techniques that are derived
from speech recognition technology.

3.1. A∗ Search Like Segment Evaluation Function
To address the first problem, we propose to evaluate the input seg-
ment yt:t+τ by dividing it into two sub-segments. The first sub-
segment yt:t+ν (0 ≤ ν ≤ τ ) is evaluated by the corpus segment
mu:u+ν and the second sub-segment yt+ν+1:t+τ is evaluated by the
corpus GMM G (denoted as φu+ν+1:u+τ ). By assuming the condi-
tional independence of the adjacent frames, this segment evaluation
function (i.e. likelihood) can be written as

p(yt:t+τ |mu:u+ν , φu+ν+1:u+τ )

= p(yt:t+ν |mu:u+ν)p(yt+ν+1:t+τ |φu+ν+1:u+τ ) (7)

=

ν∏
ε=0

g(yt+ε|mu+ε)

τ∏
ε=ν+1

[
M∑

m=1

w(m)g(yt+ε|m)

]
. (8)

The definition of this function is inspired by the A∗ search technique
in speech recognition, e.g. [15, 16], where a hypothesis is evaluated
with the likelihood of an already searched segment calculated us-
ing a precise model plus the likelihood of an unsearched future seg-
ment estimated using a rough model. This is undertaken to obtain
an equal comparison of hypotheses with different length searched
segments on the basis of the common whole segment length, i.e.
the input utterance length. Using this A∗ search like segment eval-
uation function, at each time frame t in y, we can find an input
segment yt:t+νmax and the corresponding matching corpus segment
mt

u:u+νmax
by maximizing the posterior probability as

mt
u:u+νmax

= argmax
ν

max
mu:u+ν

P (mu:u+ν , φu+ν+1:u+τ |yt:t+τ ),

(9)
P (mu:u+ν , φu+ν+1:u+τ |yt:t+τ )

=
p(yt:t+τ |mu:u+ν , φu+ν+1:u+τ )∑

u′
∑

ν′ p(yt:t+τ |mu′:u′+ν′ , φu′+ν′+1:u′+τ )
, (10)

where the denominator of Eq. (10) is the sum of the segment like-
lihoods corresponding to all the possible corpus segment locations
(i.e. u′) and all the possible segment division boundaries (i.e. ν′).

Note that, in the implementation of Eq. (9) (bottom of Fig. 2),
by fixing the length of an input segment yt:t+τ at τlim + 1 (i.e. the
maximum limit length) the posterior probabilities of all the possible
corpus segments mu:u+ν of different lengths (i.e. 1 to τlim + 1) are
compared equally on the basis of the common length, i.e. τlim + 1.
And this comparison seems to be mathematically rigorous.

The posterior probability of Eq. (10) has the longest match-
ing property as with that of Eq. (4). The proof is very simple as
follows: We compare the two posterior probabilities of the input
segment yt:t+τ ; one is evaluated with the corpus segment mu:u+ν

and the corpus GMM φu+ν+1:u+τ and the other is evaluated with
mu:u+ν−1 and φu+ν:u+τ . The denominator is common to both
probabilities and their ratio is equal to the likelihood ratio as

p(yt:t+τ |mu:u+ν , φu+ν+1:u+τ )

p(yt:t+τ |mu:u+ν−1, φu+ν:u+τ )
=

g(yt+ν |mu+ν)∑M
m=1w(m)g(yt+ν |m)

.

(11)
Here, we assume that the whole acoustic space is equally covered
by each of the Gaussian components in G and the feature yt+ν is
well-matched to the Gaussian component mu+ν . With these two as-
sumptions, the denominator on the right-hand side of Eq. (11) can
be approximated as w(mu+ν)g(yt+ν |mu+ν), and thus, Eq. (11) be-
comes equal to 1/w(mu+ν) ≥ 1. This means that, as long as there
is a Gaussian component mu+ν that matches the feature yt+ν , the
matching corpus segment mu:u+ν becomes long.
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3.2. Tree and Linear Connected Search Space
To address the second problem, we first counted the variations of
corpus segment mt:t+τ as a function of segment length (i.e. 0 ≤
τ ≤ τlim) using a speech corpus. The result is shown in the top of
Fig. 3. It is obvious that, when the segment length is 1 (i.e. τ = 0),
the number of segment variations is equal to M (= 4096), i.e. the
total number of Gaussian components in the corpus GMM G. Then,
it rapidly increases and, within a few frames, it converges to its upper
bound I , i.e. the total number of frames in the corpus.

This result indicates that a tree structure can be introduced for
the first few frames of the corpus segments (e.g. 0 ≤ τ ≤ 4 = τtree)
as shown in the bottom of Fig. 3. This is inspired by the tree lexicon
in speech recognition, e.g. [17, 18]. A corpus segment and its Gaus-
sian component sequence correspond to a word and its phoneme se-
quence (i.e. pronunciation). Using a tree search space, the like-
lihood calculations can be efficiently shared between the possible
segments. In particular, the number of likelihood calculations for
the first frame (i.e. τ = 0) can be greatly reduced, i.e. from I with
the conventional method (Section 2.2) to M (M�I).

For the remaining frames (i.e. τtree < τ ≤ τlim), we introduce
a linear search space as shown in Fig. 3. And by connecting it to
the tree search space, we can obtain the proposed tree and linear
connected search space. This connection is important in terms of
memory usage, because the tree search space requires a memory size
of τtree+1 frames (i.e. the green area in Fig. 3), in contrast, the linear
search space can be represented with only a one frame memory size
(i.e. the orange area). By introducing the linear structure, the total
memory requirement can be reduced to less than 10% compared with
that when the whole search space is represented with only the tree
structure. Of course, as with [10], the pruning of unlikely segment
hypotheses can be introduced to our search space.
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4. EXPERIMENTS
We compared the proposed segment search method with the con-
ventional one experimentally in non-stationary noisy environments.

4.1. Experimental Setup
The training condition was basically the same as in [9,10]. The clean
training data was the TIMIT speech corpus, which consists of 1088
utterances from 136 female speakers. These utterances were sam-
pled at 16 kHz. The corpus size was about 56 minutes, i.e. the total
number of frames was about 3.4×105 (=I). This clean corpus was
artificially contaminated with 25 different conditions of white noise
(see [9, 10] for details) to form a 26 multi-condition parallel speech
corpus. The frame length and shift were 20 and 10 ms, respectively,
and the feature was a 39-dimensional MFCC with a log energy term.
Using the parallel corpus, the corresponding 26 GMMs were trained.
Each GMM had 4096 (=M ) Gaussian components.

For testing, we used the TIMIT core test set, which consists
of 64 utterances from 8 female speakers. These clean utterances
were contaminated with four different non-stationary noisy condi-
tions: airport and factory noises with 0 and 5 dB signal-to-noise
ratio (SNR) levels. In the segment search, the maximum limit length
of a segment was set at 30 (i.e. τlim = 29). The number of layers
(frames) of the tree search space was set at 5 (i.e. τtree = 4, only
for the proposed method). The elastic segment matching was not
allowed. And the pruning of unlikely hypotheses was introduced in
the log-likelihood domain. The pruning beam width was set at 1, 2,
5, 10, 20 and 50. When a wider (narrower) beam width was set, the
lengths of the matching segments became longer (shorter). The qual-
ity of the enhanced speech was measured by segmental SNR. And
to confirm the quality of the corpus-based approach, as with [9, 10],
Wiener filtering with a priori SNR [19], i.e. an approach that esti-
mates the noise statistics (Section 1), was also evaluated. Both the
segment search methods were implemented in C and run on a Linux
system with Intel Xeon CPU X5690 3.47GHz. And the search speed
was measured with a real time factor (RTF).

4.2. Experimental Results
Figure 4 shows the experimental results. From Fig. 4 (a) and (b), we
can first confirm that the corpus-based approach significantly im-
proves the quality of the enhanced speech compared with Wiener
filtering as reported in [9,10]. We can also confirm that the best qual-
ity for both noise types is provided by the proposed segment search
method. These results are thanks to the mathematical rigor of the
proposed A∗ search like segment evaluation function. However, the
difference is not very large between the quality of the conventional
and proposed methods. Moreover, there is not a large difference
between the quality of any of the pruning beam widths. However,
the airport noise tends to favor wider beam widths (i.e. longer seg-
ments), in contrast, the factory noise tends to favor narrower beam
widths (i.e. shorter segments). With the airport noise, the average
segment length providing the best quality is about 8 frames. This is
slightly shorter than that reported in [10], i.e. 11 frames. We think
this is because we did not introduce the elastic segment matching that
can provide longer segments. With the factory noise, the best aver-
age segment length is about 4 frames. We think this shorter length
is caused by the characteristics of the factory noise, i.e. a quickly
repeating impulsive noise. And to compensate for these characteris-
tics, shorter segments are preferred.

From Fig. 4 (c), we can confirm that, for both the conventional
and proposed methods, hypothesis pruning is very effective in accel-
erating the segment search without degrading the quality of the en-
hanced speech. We can also confirm that the proposed method can
find the segments almost in real-time. It is about 7 to 13 times faster
than the conventional method. This acceleration is obtained mainly
by introducing the tree and linear connected search space. It is ob-
vious that the proposed method gains a further advantage over the
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conventional method in that the corpus size (i.e. I) becomes larger
since the sharing rate of the likelihood calculations (especially, for
the first frame) becomes higher.

5. RELATION TO PRIOR WORK
In [13], the optimal interconnection of a filtering-based approach and
the corpus-based approach is proposed. In this connected method,
the filtering-based approach acts as a preprocessor that reduces the
noise component in noisy observations. As a result, the number of
noise conditions in the parallel corpus can be reduced, thereby re-
ducing the cost of the segment search.

In [14], an effective method is proposed for reducing the mem-
ory requirement and the computational complexity of the inventory-
style approach. The memory reduction is accomplished with a sin-
gular value decomposition of the inventory matrices. And, using the
decomposed matrices, a fast hierarchical sub-search (not an exhaus-
tive full search) of the matching inventories can be performed.

Our fast segment search method is essentially different from
both these methods. And so, we can expect to combine our method
with these methods for further acceleration of the segment search.

6. CONCLUSION AND FUTURE WORK
We have proposed a fast segment search method for corpus-based
speech enhancement based on speech recognition technology. In ex-
periments, the proposed method found the segments almost in real-
time without degrading the quality of the enhanced speech. Our
method was about 7 to 13 times faster than the conventional method.
Future work will include the incorporation of the elastic (e.g. DP)
segment matching [9, 10] for quality improvement and combination
with the methods proposed in [13, 14] for further acceleration.
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