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ABSTRACT

This paper studies the problem of single-channel noise reduction

in the time domain. Based on some orthogonal decomposition

developed recently and the squared Pearson correlation coefficient

(SPCC), several noise reduction filters are derived. We will show

that the optimization of the SPCC leads to the Wiener, minimum

variance distortionless response (MVDR), minimum noise (MN),

minimum uncorrelated speech and noise (MUSN), and linearly con-

strained minimum variance (LCMV) filters. We also compare the

Wiener and MVDR filters derived from the SPCC to their counter-

parts derived from the mean-square error (MSE) criterion. Simula-

tions are provided to illustrate the performance of all the deduced

noise reduction filters.

Index Terms—Noise reduction, speech enhancement, squared

Pearson correlation coefficient (SPCC), optimal filters.

1. INTRODUCTION

Noise is ubiquitous. In all voice and speech related applications, the

signal of interest (i.e., speech) that is picked up by a microphone

is generally contaminated by noise, which can significantly degrade

its quality and intelligibility. To mitigate the effect of the noise in

a recorded speech signal, noise reduction (or speech enhancement)

with some signal processing techniques are generally needed, which

basically attempt to clean up the noisy signal, thereby obtaining an

estimate of the desired clean speech. This problem has been inten-

sively studied over the last four decades [1]–[18]; but it remains an

unsolved one due to its extreme difficulty.

Typically, noise reduction is achieved by passing the noisy sig-

nal through a linear filter. So, the core issue of noise reduction is to

find an optimal filter such that, after the filtering process, the signal-

to-noise ratio (SNR) is improved, implying that the microphone sig-

nal becomes cleaner. However, since the filtering operation does not

only attenuate the noise, but also affects the speech signal, careful

attention has to be paid to the speech distortion during the design

process. Currently, most existing approaches, such as the Wiener fil-

ter and the subspace method, are derived from the mean-square error

(MSE) criterion. Although these approaches have already achieved a

certain degree of success, further efforts are indispensable to find ei-

ther a better understanding of the traditional methods from different

perspectives or new filters that can help better deal with the problem.

Recently, the so-called squared Pearson correlation coefficient

(SPCC) was introduced as a cost function for analyzing noise re-

duction filters [16]. It was shown that several traditional filters that

were derived from the MSE criterion can be found with the SPCC.

One major advantage of the SPCC as compared to the MSE is that

we can have many new insights of why, how, and to what degree

the traditional filters work. In this paper, we continue to explore the

potential of the SPCC for noise reduction. The major difference, or

novelty, of this paper as compared to the work in [16] is that we

now combine the SPCC with a recently introduced orthogonal sig-

nal decomposition [17], [18] and propose other ways to derive new

filters. Indeed, we show that many optimal noise reduction filters

can be derived by either maximizing or minimizing the SPCC, some

of which are the same as the traditional ones while others are new.

For example, by maximizing the SPCC, we derive the well-known

Wiener and minimum variance distortionless response (MVDR) fil-

ters that can directly achieve an estimate of the clean speech. On

the other hand, by minimizing the SPCC, we can derive many filters

such as the minimum noise (MN), the minimum uncorrelated speech

and noise (MUSN), and the linearly constrained minimum variance

(LCMV) filters that can achieve an estimate of the noise signal and

then the desired signal. These filters may have some good potential

in dealing with colored noise or noise exhibiting strong self correla-

tion.

2. SIGNAL MODEL AND PROBLEM FORMULATION

The noise reduction problem considered in this paper is one of recov-

ering the desired signal (or clean speech) x(k), k being the discrete-

time index, of zero mean from the noisy observation (microphone

signal) [1]–[4]:

y(k) = x(k) + v(k), (1)

where the zero-mean random process v(k) is the unwanted additive

noise, which is assumed to be uncorrelated with x(k). All signals

are considered to be real and broadband.

The signal model given in (1) can be put into a vector form by

considering the L most recent successive time samples, i.e.,

y(k) = x(k) + v(k), (2)

where

y(k)
△

=
ˆ

y(k) y(k − 1) · · · y(k − L + 1)
˜T

(3)

is a vector of length L, superscript T denotes the transpose of a vec-

tor or a matrix, and x(k) and v(k) are defined in a similar way to

y(k). We can decompose the speech signal vector into two orthogo-

nal components:

x(k) = ρ
xxx(k) + xu(k) = x1(k) + xu(k), (4)

where x1(k)
△

= ρ
xxx(k),

ρ
xx

△

=
E [x(k)x(k)]

E [x2(k)]
=

E [x(k)x(k)]

σ2
x

(5)

is the normalized correlation vector (of length L) between x(k)

and x(k), with E[·] denoting mathematical expectation, σ2
x

△

=
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E
ˆ
x2(k)

˜
is the variance of x(k), and xu(k) is the uncorrelated

speech signal vector, i.e., E [xu(k)x(k)] = 0. In the same way, we

can decompose the noise signal vector as

v(k) = ρ
vvv(k) + vu(k) = v1(k) + vu(k), (6)

where v1(k)
△

= ρ
vvv(k), ρ

vv and vu(k) are defined in a similar

way to ρ
xx and xu(k), respectively. Then, we can rewrite (2) into

y(k) = x1(k) + xu(k) + v1(k) + vu(k). (7)

Since the four terms on the right-hand side of (7) are mutually un-

correlated, the correlation matrix of y(k) is

Ry

△

= E
h
y(k)yT (k)

i
= Rx1

+ Rxu
+ Rv1

+ Rvu
, (8)

where Rx1
= σ2

xρ
xxρ

T
xx is a matrix of rank 1, Rxu

is the correla-

tion matrix of xu(k), Rv1
= σ2

vρ
vvρ

T
vv , and Rvu

is the correlation

matrix of vu(k).

With the above formulation, the objective of single-channel

noise reduction (or speech enhancement) in the time domain is then

to find from the observation vector, y(k), a “good” estimate of the

sample, x(k), in the sense that the additive noise is significantly re-

duced while the desired signal is not much distorted.

3. LINEAR FILTERING AND THE SQUARED PEARSON

CORRELATION COEFFICIENT

In this paper, we estimate the desired signal sample, x(k), or the

noise signal sample, v(k), by applying a real-valued filter, h, of

length L, to the observation signal vector, y(k), i.e.,

z(k) = h
T
y(k), (9)

where z(k) can be either an estimate of x(k) or v(k). If z(k) is

an estimate of v(k), then an estimate of x(k) can be obtained as

bx(k) = y(k) − z(k).

It is of great importance to know how good is the estimate z(k).

One of the best second-order statistics based measures to evaluate

this is via the squared Pearson correlation coefficient (SPCC) [16].

We define the SPCC between z(k) and x(k) as

ρ
2

zx (h)
△

=
E2 [z(k)x(k)]

E [z2(k)] E [x2(k)]
(10)

=
σ2

x

`
hT

ρ
xx

´2

hT Ryh
=

hT Rx1
h

hT Ryh
.

We see that the SPCC defined above depends explicitly on the filter,

h, which suggests that we can use the SPCC as a criterion to derive

optimal filters. Note that many different forms of the SPCC can be

used [16], but this paper focuses only on ρ2
zx (h).

4. EXAMPLES OF OPTIMAL FILTERS

Intuitively, it makes sense to maximize or minimize the SPCC in

order to find an estimate of x(k) or v(k). It is clear that the maxi-

mization (resp. minimization) of ρ2
zx (h) will give a good estimate

of x(k) [resp. v(k)], since in this case the SPCC between z(k) and

x(k) will be maximal [resp. minimal], implying that z(k) is close to

x(k) [resp. v(k)].

4.1. Maximization of the SPCC

It is obvious that the maximization of (10) leads to an estimate of

the desired signal. In (10), we recognize the generalized Rayleigh

quotient [19]. It is well known that this quotient is maximized with

the maximum eigenvector, a1, of the matrix R−1
y Rx1

. Let us denote

by λa1
the maximum eigenvalue corresponding to a1. Since the rank

of Rx1
is equal to 1, it can be checked that

a1 =
R−1

y ρ
xxq

ρT
xxR

−1
y ρ

xx

, (11)

λa1
= σ

2

xρ
T
xxR

−1

y ρ
xx, (12)

and the maximum of the SPCC is

ρ
2

zx,max = λa1
. (13)

As a result, the optimal filter is

hα1
= α1R

−1

y ρ
xx, (14)

where α1 6= 0 is an arbitrary real number, whose value is important

in practice when we deal with nonstationary signals like speech1 .

Hence, the estimate of x(k) is

bxα1
(k) = h

T
α1

y(k). (15)

Now, we need to determine α1. There are at least two interesting

ways to find this parameter. The first one is from examining the MSE

between x(k) and bxα1
(k), i.e.,

J (hα1
)

△

= E

h
x(k) − h

T
α1

y(k)
i2

ff
. (16)

The second possibility is to use the distortion-based MSE, i.e.,

Jds (hα1
)

△

= E

h
x(k) − h

T
α1

x1(k)
i2

ff
(17)

= σ
2

x

“
1 − h

T
α1

ρ
xx

”2

.

The minimization of J (hα1
) with respect to α1 leads to

α1 = σ
2

x. (18)

Substituting (18) into (14), we get the conventional Wiener filter [4]:

hW = σ
2

xR
−1

y ρ
xx = R

−1

y Rxi1

=
`
IL −R

−1

y Rv

´
i1, (19)

where i1 is the first column of the L × L identity matrix, IL.

By minimizing Jds (hα1
) with respect to α1, we obtain

α1 =
1

ρT
xxR

−1
y ρ

xx

. (20)

Substituting the previous result into (14) gives the MVDR filter de-

rived in [18]:

hMVDR =
R−1

y ρ
xx

ρT
xxR

−1
y ρ

xx

. (21)

1Obviously, for stationary signals, the value of α1 does not matter at all
as long as its value is different from zero.
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4.2. Minimization of the SPCC

Another approach to find optimal filters is by minimizing (10).

Therefore, the filter output will be an estimate of v(k). The prod-

uct matrix R−1
y Rx1

has L− 1 eigenvalues equal to 0, since its rank

is equal to 1. Let a2, a3, . . ., aL be the corresponding eigenvectors.

The filter:

hα2:L
=

LX

i=2

αiai, (22)

where αi, i = 2, 3, . . . , L are arbitrary real numbers with at least

one of them different from 0, minimizes (10). In this case, we have

hT
α2:L

ρ
xx = 0 and

ρ
2

zx (hα2:L
) = ρ

2

zx,min = 0. (23)

We can rewrite (22) as

hα2:L
= A2:Lα2:L, (24)

where

A2:L
△

=
ˆ

a2 a3 · · · aL

˜
(25)

is a matrix of size L × (L − 1) and

α2:L
△

=
ˆ

α2 α3 · · · αL

˜T
6= 0 (26)

is a vector of length L − 1. Then, the estimates of v(k) and x(k)
are, respectively,

bvα2:L
(k) = h

T
α2:L

y(k) = h
T
α2:L

xu(k) + h
T
α2:L

v(k) (27)

and

bxα2:L
(k) = y(k) − bvα2:L

(k) = h
′T
α2:L

y(k), (28)

where

h
′

α2:L
= i1 − hα2:L

(29)

is the equivalent filter for the estimation of x(k).

The MSE between v(k) and bvα2:L
(k) is

J (hα2:L
)

△

= E

h
v(k) − h

T
α2:L

y(k)
i2

ff
(30)

= Jrus (hα2:L
) + Jrn (hα2:L

) ,

where

Jrus (hα2:L
)

△

= h
T
α2:L

Rxu
hα2:L

, (31)

Jrn (hα2:L
)

△

= E

h
v(k) − h

T
α2:L

v(k)
i2

ff
, (32)

are the MSEs of the residual uncorrelated speech and residual noise,

respectively. Equivalently, we can write J (hα2:L
) as

J (hα2:L
) = Jrus (hα2:L

) + Jrun (hα2:L
) + Jrcn (hα2:L

) ,

where

Jrun (hα2:L
)

△

= h
T
α2:L

Rvu
hα2:L

, (33)

Jrcn (hα2:L
)

△

= σ
2

v

“
1 − h

T
α2:L

ρ
vv

”2

, (34)

are the MSEs of the residual uncorrelated and correlated noise, re-

spectively. From (30) and (33), we see that there are at least three

interesting ways to find α2:L.

Now, we can design different filters. The first possibility is

through minimizing the power of the residual noise, Jrn (hα2:L
).

The minimization of Jrn (hα2:L
) with respect to α2:L gives

α2:L =
“
A

T
2:LRvA2:L

”
−1

A
T
2:LRvi1. (35)

As a result,

hα2:L
= A2:L

“
A

T
2:LRvA2:L

”−1

A
T
2:LRvi1 (36)

and the minimum noise (MN) filter for the estimation of x(k) is

h
′

MN =

»
IL − A2:L

“
A

T
2:LRvA2:L

”
−1

A
T
2:LRv

–
i1. (37)

This filter is new and has never been studied in the literature.

By minimizing the MSE J (hα2:L
), we find the minimum un-

correlated speech and noise (MUSN) filter:

h
′

MUSN =

»
IL − A2:L

“
A

T
2:LRyA2:L

”−1

A
T
2:LRv

–
i1. (38)

This second option gives also a new filter, which may reduce less

noise than h′

MN but at the same time it will reduce the level of the

uncorrelated speech that can be considered as a distortion to the de-

sired signal.

Finally, the last possibility is to minimize Jrus (hα2:L
) +

Jrun (hα2:L
) subject to hT

α2:L
ρ

vv = 1. We find that

α2:L =

`
AT

2:LRusnA2:L

´−1
AT

2:Lρ
vv

ρT
vvA2:L (AT

2:LRusnA2:L)
−1

AT
2:Lρ

vv

, (39)

where Rusn = Rxu
+ Rvu

, whose rank is assumed to be at least

equal to L − 1. As a consequence, we get the linearly constrained

minimum variance (LCMV) filter:

h
′

LCMV = i1 −
A2:L

`
AT

2:LRusnA2:L

´−1

AT
2:Lρ

vv

ρT
vvA2:L (AT

2:LRusnA2:L)
−1

AT
2:Lρ

vv

. (40)

5. SIMULATIONS

In this section, we briefly study the different filters and compare their

noise reduction performance through simulations. The clean speech

signal used was recorded from a male talker in a quiet office room.

It was sampled at 8 kHz. The overall length of the signal is 30 sec-

onds. The noisy signal is obtained by adding some noise into the

clean speech with an input SNR of 10 dB. The noise is a mixture

of a Gaussian random process and a sine wave of 1 kHz. The ratio

between the intensity of the sine wave and that of the white noise is

6 dB.

To implement the optimal filters derived in section 4, it requires

the estimation of the correlation matrices and vectors. The estimate

of the correlation matrices Ry and Rv is computed directly from the

corresponding signals using a short-time average (the most recent

400 samples). An estimate of the correlation matrix of the clean

speech, Rx, is computed according to bRx(k) = bRy(k) − bRv(k).

The other correlation matrices and vectors are computed according

to their definitions in Section 4.

We use both the output SNR and speech distortion index as per-

formance measures. The former quantifies the amount of noise re-

duction while the latter quantifies the amount of speech distortion. It
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Fig. 1. Behavior of ρ2
zx,max and ρ2

zx,min : (a) noisy signal, (b)

ρ2
zx,max computed with the Wiener and MVDR filters, and ρ2

zx,min

computed with the MN, MUSN, and LCMV filters. iSNR = 10 dB

and L = 8.

is seen in Section 2 that the interference part of the clean speech sig-

nal vector is uncorrelated with the desired clean speech sample. So,

this part, after filtering, should not be treated as part of the desired

signal [18]. As a result, we can define the output SNR after noise

reduction as

oSNR
△

=
E

ˆ
x2

fd(k)
˜

E [x2

ri
(k)] + E [v2

rn(k)]
, (41)

where xfd(k) is the filtered desired signal, xri(k) is the residual in-

terference, and vrn(k) is the residual noise. The speech distortion

index is defined as [18]

υsd =
E

˘
[xfd − x(k)]2

¯

E [x2(k)]
. (42)

The filters derived in Section 4 are divided into two classes. The

first one, consisting of the Wiener and MVDR filters, attempts to

maximum the SPCC, ρ
xx, and the resulting filters’ outputs are es-

timates of the desired signal, x(k). The second class, consisting of

the MN, MUSN, and LCMV filters, attempts to minimize the SPCC,

ρ
xx, and the resulting filters’ outputs are estimates of the noise sig-

nal, v(k).

Figure 1 illustrates the SPCC between z(k) and x(k) obtained

with different optimal filters (for the first 5 seconds), where ρ2
zx,max

is obtained using the Wiener and MVDR filters (both of them yielded

similar ρ2
zx,max) and ρ2

zx,min is obtained using the MN, MUSN, and

LCMV filters (all of them produced similar ρ2

zx,min). The value of

ρ2
zx,max is close to 1 during the presence of speech. This indicates

that the outputs of the Wiener and MVDR filters are good estimates

of x(k). In comparison, the value of ρ2

zx,min is close to 0. This

suggests that the outputs of the MN, MUSN, and LCMV filters are

good estimates of v(k).

Figure 2 plots the output SNR and speech distortion index as a

function of the filter length, L. It is seen that the Wiener filter has

the largest SNR improvement; but it also introduces more speech

distortion than other studied filters as indicated by the speech distor-

tion index. Compared with the Wiener filter, the MVDR one has a

lower output SNR but with no speech distortion. In fact, the only

difference between the Wiener and MVDR filters is a scaling factor

[α1 in (14)]. But this factor is time varying due to the nonstation-

arity of speech. By adjusting it, the MVDR filter manages to keep

the desired speech undistorted. It is also seen from Fig. 2(b) that
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Fig. 2. Performance of the optimal filters (Wiener, MVDR, MN,

MUSN, and LCMV) as a function of the filter length, L, in white

Gaussian plus sinusoidal noise: (a) output SNR and (b) speech dis-

tortion index. iSNR = 10 dB.

all filters in the second class do not introduce any speech distortion;

this is consistent with the theoretical analysis in Section 4. Both the

MUSN and LCMV filters can improve the SNR if the filter length, L,

is properly chosen; but for the MN filter, the output SNR is smaller

than the input SNR for the studied noise condition. The underlying

reason is that the MN filter only attempts to minimize the residual

noise; but it causes some amplification of the residual interference.

More efforts are underway to study the advantages and limits of all

the deduced filters.

6. SUMMARY

In this paper, we studied the single-channel noise reduction problem

in the time domain. The SPCC between the filter output and desired

signal is used as a criterion. By maximizing and minimizing this

SPCC, we showed how to derive two classes of noise reduction fil-

ters. The first class attempts to achieve directly an estimate of the

desired speech signal by maximizing the SPCC criterion. The filters

in this class are equivalent to the traditional ones derived from the

MSE criterion. The second class attempts to obtain an estimate of

the noise by minimizing the SPCC. Different new filters were then

derived. Simulation results showed that the filters can have very dif-

ferent noise reduction performance. Their potential in dealing with

different types of noise is under investigation.

7. RELATION TO PRIOR WORK

Noise reduction is a fundamental problem, which has a broad range

of applications [1]–[18]. Typically, the problem is formulated as a

filtering technique. So, the paramount issue with noise reduction is

to design an optimal filter that can significantly reduce the level of

the noise while keeping the distortion of the desired speech signal

as low as possible [1]–[6]. Traditionally, most optimal filters are

derived from the MSE criterion. In this paper, we adopted the SPCC

[16] as the cost function. With the use of SPCC, we showed how

to derive different noise reduction filters. Some of the filters are the

same as those derived with the MSE criterion, while others are new.
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