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ABSTRACT

Recognizing video events has been a very active field of in-

terest. The diversity of videos captured in complex environ-

ments and under difficult conditions makes the event recog-

nition a challenging task. In this paper, we present a video

event recognition method which exploits the power of graphs

for representing the structural organization of the features and

the success of the Bag-of-Words approach. Our method com-

bines the Scale Invariant Feature Transform and the Space-

Time Interest Point features to characterize the video. To

model the spatio-temporal relations among these features, a

graph-based representation is used for each video. Then, the

video is indexed based on a histogram of frequent sub-graphs.

To evaluate our method, we have used the Columbia Con-

sumer Video dataset. The experimental results show the effi-

ciency of the proposed method.

Index Terms— Video event recognition, Spatio-temporal

features, Bag-of-sub-Graphs, Graph-based video modeling.

1. INTRODUCTION

Many efforts have been devoted to recognize the human

actions[1, 2], hand gestures [3] and especially the video

events [4, 5, 6, 7]. The Bag-of-Words (BoW) approach was

commonly followed due to promising results that it provides

[4, 5, 8, 9, 10, 2, 1]. It consists on representing each video

with a histogram of visual words obtained by quantifying the

extracted features. In [4], the static Scale Invariant Feature

Transform (SIFT) [11] and the Space-Time Interest Point

(STIP) features [12] are used as visual features and the Mel-

Frequency Cepstral Coefficients (MFCC) is used as audio

features to describe the video events. Then, three BoW are

conducted on these features of all the videos. Consequently,

a 5000 dimensional SIFT histogram, a 5000 dimensional

STIP histogram and a 4000 dimensional MFCC histogram

are concatenated together to form the final video descriptor.

The main drawback of the BoW approach is the lack of

structural organization of the features. These weaknesses can

be surpassed by interconnecting the features using structured

models such as the graphs [5, 13, 6, 1, 14]. In [5], Ye et al.

have used the same audio and visual features as [4] follow-

ing the BoW approach to form audio and visual codebooks.

Then, the audio words are connected to the visual words with

a bipartite graph which is partitioned in order to discover

the audio-visual bi-modal words. Each bi-modal word is a

group of audio and/or visual words that frequently co-occur

together. So, the audio-visual bi-modal codebook will be

formed and used to index the videos. Graph-based represen-

tation is also used in [6] where the video is represented with a

set (string) of feature graphs that respect the spatio-temporal

ordering. Graph matching is conducted in order to determine

the classes of the events present inside the video. Najib et

al. [13] have also used the graph-based representation. Video

frame are modeled with a spatial graph where graph vertices

represent the visual features of the frame segmented regions.

So, the video is indexed with a binary histogram indicating

the presence/absence of the frequent sub-graphs discovered

with the graph-based Substructure pattern mining (gSpan) al-

gorithm [15]. As a final descriptor, the video is indexed by

the combination of the spatial graph-based histogram and a

block-matching based motion feature [16, 17] that describes

the temporal information of the video.

Despite these recent attempts, exploiting the graph-based

representation for video modeling remains limited. In this

paper, we propose a graph-based video event recognition

(GVER) system. Our system exploits the efficiency of the

graphs for representing the structural organization of the

video features and the success of the BoW approach for its

indexing. The SIFT and the STIP features are extracted from

the detected interest points and combined together to charac-

terize the video. Then, the k-means algorithm is conducted

to quantize the features into k clusters. Thereafter, the video

is represented with a spatial graph set and a temporal graph

set interconnecting its features. Based on its graph repre-

sentation, the video is indexed with a histogram of frequent

sub-graphs, extracted from the graph database. This is done

in a similar way to the BoW approach considering that the

frequent sub-graphs represent the visual words. From this

comes the idea to call our approach: Bag-of-sub-Graphs

(BoG). Finally, like [4], a one-versus-all SVM with χ2 kernel

is applied to classify the video events.

In comparison with our previous work [13], four main

contributions can be revealed in this work: (1) rather than

using spatial and temporal features computed separately from

the video, spatio-temporal features are used to detect the
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video motion and appearance around local 3D-interest points;

(2) in [13], spatial graphs are constructed from segmented

frame regions while in this work, they are constructed from

detected spatio-temporal interest points. Consequently, this

spatial graphs will not only surmount the problem of region

segmentation but also integrate the temporal information in

the video. (3) In this work, the spatial graphs are coupled with

temporal graphs in order to extend the graph-based modeling

from the frame level to the video level so to give an overall

description of the video; (4) For the graph-based video index-

ing, we have improved the histogram encoding from a binary

histogram to a numerical histogram that gives the number of

occurrences of frequent sub-graphs.

In comparison with the state of the art methods, the con-

tributions of this work can be summarized as follows: (1)

Unlike [5, 6], we use a combination of spatial and temporal

graphs. (2) To overcome the aforementioned drawbacks of the

BoW based methods [4, 5], we have used spatio-temporal fea-

tures and a model on top of them which provides the spatio-

temporal relationships. (3) Our method can be considered

as a generalization of the method used in [5, 6] where rela-

tively simple graph structures are used to model the video. In

contrast, our approach allows a more general structure with

a higher and variable order as well as flexible topography.

(4) Unlike most methods [5, 6], only significant and relevant

sub-graphs are retained to model the video. (5) Unlike [6]

that employ sequential graph matching to retrieve the most

similar videos, we convert the graph matching problem to a

vector space one by representing a graph with a histogram of

frequent sub-graphs. This enables us to apply learning algo-

rithms [4, 18] on these histograms for event classification.

The rest of this paper is organized as follows. In section

2, we describe in detail our GVER method which feat the ef-

ficiency of the graph representation to model and index the

video events. In section 3, we evaluate our method on the

Columbia Consumer Video (CCV) dataset [4]. The experi-

mental results show the effectiveness of the proposed method.

Finally, we conclude our paper by giving a summary of the

presented work and proposing some future extensions.

2. OUR GRAPH-BASED VIDEO EVENT

RECOGNITION METHOD

Figure 1 illustrates the framework of our GVER system. Our

system is composed of two phases: training phase and test-

ing phase. In the training phase, from each training video,

features are extracted and used to construct a set of spatial

graphs (one graph for each video frame) and a set of tem-

poral graph. As a result, two graph databases are formed.

Then, from each graph database, frequent sub-graphs are dis-

covered and used to model each video with a histogram of fre-

quent spatial sub-graphs and a histogram of frequent temporal

sub-graphs. The two histograms are normalized and horizon-

tally concatenated together to form the final video descriptor.

Fig. 1. Illustration of our GVER system

Consequently, the video will be indexed with a Bag-of-sub-

Graphs. Finally, the training video descriptors are classified

with SVM [4] to build a model for each video event. In the

testing phase, the same process is followed to compute the

graph-based video descriptor. Then, the video events are rec-

ognized using the event models already built by SVM in the

training phase. Our GVER system is described in detail in the

next sections.

2.1. Feature extraction

The combination of the SIFT and the STIP visual features

has been proved to be efficient to recognize video event [4,

5]. So, we have used it in our system. After, the detection

of spatio-temporal interest points with the Harris-3D method

[19], a 128 dimensional SIFT is extracted at each point to

capture the spatial local gradients. This feature is invariant

to scale and robust to affine distortion. Besides, from each

interest points, the STIP features are computed in order to

describe the space-time variations. STIP feature extraction

consist on extracting the Histograms of Oriented Gradients

(HOG), describing the local appearance, and the Histograms

of Optical Flow (HOF), describing the motion in the video,

from the 3D volume around the interest points. We have used

the Laptev method [19] to extract a 72 dimensional HOG and

a 72 dimensional HOF and concatenate them to form a 144

dimensional feature as the final descriptor for each interest

point.

2.2. Graph-based video representation

Each video is represented with spatial and temporal video

graphs sets. Spatial and temporal video graph vertices are

the spatio-temporal interest points already detected with the

Harris-3D method. Each graph vertex is labeled by the class

of its corresponding spatio-temporal interest point. To ob-

tain the class of an interest point, all interest point descriptors

(SIFT+STIP) of the training videos are clustered with the k-

means algorithm into k clusters. So, the class of an interest

point is the nearest cluster of the its descriptor.

To construct the Spatial Video Graph Set (SVGS), we

spatially connect all the spatio-temporal interest points of the

same video frame together (see Figure 2). Afterward, the

graph edge connecting two spatio-temporal interest points
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Fig. 2. An example of a SVGS and a TVGS of a video

(two vertices) is associated to an edge vector. This latter

is composed of the displacements dx and dy, respectively,

between the x-coordinates and the y-coordinates of the two

participating vertices. Then, to label the edges, the k-means

algorithm is applied to all edge vectors associated to the train-

ing videos and each edge is labeled by the closest cluster to

its corresponding vector.

Having regard to The Temporal Video Graph Set (TVGS),

each spatio-temporal interest point is connected to the one

which has the same label in the next frame (see Figure 2).

The search of the spatio-temporal interest point in the next

frame is performed inside a window of n × n pixels. After-

ward, the graph edge is labeled with the temporal displace-

ment between two participating vertices. This displacement

is quantized into 4 directions: top-left, top-right, bottom-left

and bottom-right. Consequently, the TVGS will be formed

by collecting all the trajectories of the spatio-temporal inter-

est points.

2.3. Video indexing using frequent sub-graphs

Until this phase, each video is represented by a SVGS and

a TVGS. Two graph databases will be then formed from the

SVGSs and the TVGSs associated to the training videos: the

database of the spatial graphs (DSG) and the database of the

temporal graphs (DTG). Afterward, frequent spatial and tem-

poral sub-graphs are discovered from them by applying the

gSpan algorithm [15] (see Figure 3). Then, each video will be

indexed by two histograms (histogram of the frequent spatial

sub-graphs and histogram of frequent temporal sub-graphs)

which are then horizontally concatenated together to form the

final video descriptor.

In order to reduce the high complexity of the graph match-

ing (graph isomorphism), frequent sub-graphs are discovered

from the graphs and used to identify the similarity between

them [13]. The discovery of the frequent sub-graphs is based

on the minimum support (minSup), which is the number of

Fig. 3. Video indexing using frequent spatial and temporal

sub-graphs

appearances that a sub-graph must exceed to be frequent in a

database. Different frequent subgraphs discovery algorithms

have been developed [15, 20, 21, 22]. The gSpan algorithm

[15] outperforms other algorithms in the computational time

and is capable of mining large frequent sub-graphs in a big

graph set. This makes it an appropriate algorithm for our

GVER system.

To compute the video histogram of the frequent spatial

subgraphs, we proceed as follows:

• For each graph in the SVGS, we form a frequent spa-

tial sub-graphs histogram. It consists in counting the

number of occurrences, in the graph, of each frequent

spatial sub-graphs discovered by gSpan.

• The histograms are added up over all the graphs in the

SVGS to form the video histogram of the frequent spa-

tial sub-graphs.

The same procedure is followed to compute the histogram

of frequent temporal sub-graphs. The two histograms are hor-

izontally concatenated together to form the video descriptor

which is then rescaled. The rescaling is conducted to stan-

dardize the descriptor element values between 0 and 1.

Finding the frequencies of a sub-graph in a graph is a

challenging task since it involves sub-graph isomorphism (a

sub-graph isomorphism problem consists in deciding if there

exists a copy of a sub-graph in a target graph) which is an NP-

complete problem [13]. To surmount the sub-graph isomor-

phism problem, the Maximum Common Sub-graph (MCS)

method is used [13]. It finds the Common Sub-graph (CS),

which is the largest common substructure between the graph

and the sub-graph. Then, it computes the maximum clique

in CS (the maximum clique is the largest group of vertices in

a graph that are all connected to each other another). Con-

sequently, if the maximum clique has at least the size of the

sub-graph, the sub-graph is considered to be present in the

graph.

In our work, to compute the number of occurrencesNo of

a frequent sub-graph SG in a graphG, we begin by computing

the CS between them. CS is composed of:

• Edges which exist, with the same labels and the same

composing vertice labels, in SG and in G (commonly

present).
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Fig. 4. Detecting a maximum clique from a CS between a

graph G and a non complete frequent sub-graph SG.

• Edges, with the same composing vertice labels, which

do not exist in SG and exist in G (added to the CS for

calculation reasons in order to be able to use the maxi-

mum clique detection method [23]).

The Figure 4 shows an example of CS between a graph G

and a frequent sub-graph SG. In CS, the edges in bold are

those which are commonly present, the dashed edge is the

one which is added for computation reasons.

In the next step, we detect in CS the maximum cliques that

have a size equal to or greater than the size of SG. No corre-

sponds then to the number of the detected maximum cliques.

In CS of the Figure 4, we have one maximum clique having

a size (3) which is superior to the size of SG (2). So, the

frequency of SG in G is equal to 1.

3. EXPERIMENTS

The evaluation of our GVER system is done on a benchmark

dataset for video event recognition: the Columbia Consumer

Video dataset (CCV) [4]. It is composed of 9317 unedited

consumer videos (about 210 hours in total) which make it one

of the largest datasets publicly available in the Internet. The

importance of these videos, shared in the YouTube website

net, is that they contain important events for consumers. The

dataset is divided into a training set of 4659 and a testing set

of 4658 videos and it is labeled with 20 semantic categories

of consumer concepts (15 of them are video events).

In our experiment, we have extracted local SIFT and STIP

features. Then, to label the graphs, the SIFT+STIP features

and the graph edge vectors are quantized using the k-means

algorithm. The number of frequent sub-graphs is obtained

by experimentally fixing the minSup in gSpan. For DSG, we

denote by kvs, kes and Nfs respectively the number of ver-

tice labels, the number of edge labels and the number of fre-

quent spatial sub-graphs. For DTG, we denote by kvt and

Nft respectively the number of vertice labels and the number

of frequent temporal sub-graphs. Using cross validation, we

tune these parameters in order to have their optimal values.

For each couple (kvs, kes), we change the minSup value. For

each minSup, we obtain a value of Nfs. For DSG, the opti-

mal values of kvs, kes and Nfs are respectively 2000, 1000

and 7700. This setting is validated on the test dataset since

Fig. 5. Per-category performance comparison on CCV

dataset. This figure is best viewed in color.

it gives the best mean Average Precision (mAP). For DTG,

the optimal values of kvt and Nft are respectively equal to

1500 and 4400. For the construction of the TVGSs, we have

taken, as search window size, n=15 since it has given exper-

imentally the best result by applying cross validation in the

training dataset. To classify the videos, we have adopted the

one-versus-all multi-class SVM with χ2 kernel used in [4].

Figure 5 presents a comparison between our GVER sys-

tem and the state-of-the-art methods for the CCV dataset in

terms of event average precision (AP) and mAP. It can be ob-

served that most events show relatively low recognition rates.

This can be explained by the fact that the CCV dataset con-

tains particularly challenging video conditions. Using the

combination of STIP and SIFT features following the BoW

approach, the method proposed in [4] has reached a mAP

equal to 55.1%. By including the MFCC features, they have

obtained a 59.5% mAP. The graph and BoW based descriptor

used in [5] has given a 64.6% mAP using the three features

(SIFT+STIP+MFCC). In our BoG method, the combination

of frequent spatial and temporal sub-graph histograms results

on a 12100-dimensional video descriptor. Using this video

descriptor, we have reached a mAP equal to 67.58%. As it can

be noticed, our video descriptor is not only less dimensional

than the one used in [4, 5] which used a 14000-dimensional

descriptor, but also it has given better result. Besides, with-

out using the audio feature, our system outperforms the other

methods [4, 5] which have used the audio modality to recog-

nize the video events. This encouraging result illustrates the

ability of our BoG method to build useful event models.

4. CONCLUSION

In this work, we demonstrated that graph-based video repre-

sentation is efficient for recognizing video events. The pro-

posed method exploits the benefits of graphs to model the

structural organization of the local features and the success

of the BoW approach to recognize video events. In our future

works, due to the promising results given by our BoGmethod,

we will extend our work to the video detection task. Besides,

we will test more visual features and try to exploit the audio

information using features such as MFCC.
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