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ABSTRACT

The use of non-convex sparse regularization has attracted
much interest when estimating a very sparse model on high
dimensional data. In this work we express the optimality
conditions of the optimization problem for a large class of
non-convex regularizers. From those conditions, we derive
an efficient active set strategy that avoids the computing
of unnecessary gradients. Numerical experiments on both
generated and real life datasets show a clear gain in computa-
tional cost w.r.t. the state of the art when using our method to
obtain very sparse solutions.

Index Terms— Non-convex optimization, sparsity, very
large scale

1. INTRODUCTION

Sparsity and sparse optimization have been of particular inter-
est to the machine learning and signal processing community
in the last decades, especially with the exponential increase
in the size of datasets. One of the most successful strategies
for sparse estimation is the use of non-differentiable sparsity
promoting regularizers in the optimization framework, more
specifically the `1 regularization also known as Lasso [1, 2].
However, it is well known that the `1-penalty is biased and
not always consistent [3]. The interest has thus been shifted
toward other types of penalties, in particular non-convex and
non-differentiable ones. Indeed, the main advantage of the
latter is that they reduce the bias of the `1-penalty while pos-
sibly leading to even sparser solutions. Hence, non-convex
penalties are especially useful in datasets where we wish to
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select only a small set of features out of a huge number. Pop-
ular examples are the Smoothly Clipped Absolute Deviation
(SCAD) [4], the Minimax Concave Penalty (MCP) [5] and
the Log-Sum Penalty (LSP) [6] (see [7] for more examples).

The non-convexity obviously makes the problem harder to
solve and does not necessarily yield a unique solution. Nev-
ertheless, there have been recent works proposing efficient al-
gorithms: among others, the Difference of Convex (DC) pro-
gramming [8] is actually equivalent to a reweighted `1 penalty
[9, 6]; the General Iterative Shrinkage and Threshold (GIST)
algorithm [7] is based on proximal operators for non-convex
penalties and the Sequential Convex Programming (SCP) [10]
uses local approximations at each iteration.

As mentioned before, non-convexity is especially inter-
esting in very large datasets where we wish to obtain a very
sparse solution. It was shown in [7] that the GIST algorithm
converges faster and is more efficient than DC and SCP. Even
so, GIST is a gradient descent method that typically requires a
large number of gradient computations and can thus be costly
when dealing with more than several hundreds of thousands
of features. This is the case for instance for datasets in phar-
makinetics, genetics, social networks or recommendation sys-
tems [11]. It is thus highly desirable to modify the existing
algorithms so that they can handle that many features in a
reasonable time.

We propose in this work to use an active set strategy for
handling an extremely large number of features. The main
idea behind our approach is that when the solution is very
sparse, one should avoid dealing with all the variables at each
iteration, as done in a descent algorithm. The gradient com-
putation on all variables is still necessary but will be com-
puted only periodically in order to add variables to the ac-
tive set. The rest of this communication is organized as fol-
lows. We establish optimality conditions for a large family
of non-convex regularizers in Section 2 and propose an active
set algorithm that uses these conditions in Section 3. Finally,
Section 4 displays the results of numerical experiments.
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2. LEARNING PROBLEM

2.1. Framework

As stated in the introduction, we are interested in solving
sparse optimization problems that occur for instance in ma-
chine learning or in compressed sensing problems. Such
problems are often of the form

min
x∈Rp

{f(x) = l(x) + r(x)} , (1)

where l(·) is a proper and differentiable function with a
Lipschitz-continuous gradient and r(·) is a proper, lower
semi-continuous and possibly non-convex function. The
function l is usually taken as the data-fitting term, like the
least-squares or the logistic loss functions. Here, the function
r corresponds to the penalty or regularization term leading to
a sparse solution, like the SCAD or the log-sum penalties.

We further assume that the sparsity-inducing regulariza-
tion term can be expressed as the difference of two convex
functions r1 and r2, that is, r(x) = r1(x) − r2(x). In ad-
dition, we also assume that the functions r1 and r2 can be
expressed as

r1(x) =
∑
i

g1(|xi|), r2(x) =
∑
i

g2(|xi|), (2)

with g1(·) and g2(·) two differentiable functions on [0,∞).
Note that most regularization terms of interest can be rewrit-
ten under this form, hence this hypothesis barely induces
loss of generality. For instance, taking g1(|xi|) = λ|xi| and
g2(|xi|) = λ|xi| − λ log(1 + |xi|/θ) yields the log-sum
penalty, while g1(|xi|) = λ|xi| and g2(|xi|) = λ|xi| − λ(1 +
|xi|/θ)p, 0 < p < 1, gives the `p regularization term, where
θ, λ > 0 in both cases.

2.2. DC Optimality conditions

According to the above framework, we seek at the optimality
condition for a difference of convex functions where the first
convex part is l(x) + r1(x) and the second one is r2(x), thus
corresponding to a DC framework. DC programming has al-
ready been intensively analyzed and some chararacterizations
of local minima have been provided. For instance, if x∗ is a
local minimum of problem (1), then we have [12, Thm 3.4.6]

∂r2(x∗) ⊂ ∇l(x∗) + ∂r1(x∗), (3)

where ∇(·) denotes the gradient operator and ∂(·) the sub-
differential operator. Note that, since r1 and r2 are convex,
their subdifferentials at any point x are always non-empty
[13]. The above conditions can be rewritten as follows: ∀z2 ∈
∂r2(x∗),∃ z1 ∈ ∂r1(x∗) such that

0 = ∇l(x∗) + z1 − z2.

From the separability of the regularization term r(·), the op-
timality condition can be expressed componentwise. Indeed,

denoting the ith component of a (resp. zk) by ai (resp. zk,i),
we obtain

0 = −∇l(x)i + z1,i − z2,i. (4)

Further, applying the subgradient chain rule yields zk,i =
g′k(|xi|)βk, k ∈ {1, 2}, with βk ∈ ∂|xi|. Since the subdif-
ferential of |xi| is well known to be [−1, 1] for xi = 0 and
si = sign(xi) otherwise, there exists β1 such that, ∀β2, the
final optimality conditions are

∇l(x)i =

{ (
g′1(|xi|)− g′2(|xi|)

)
si, xi 6= 0

β1g
′
1(0)− β2g

′
2(0), xi = 0.

(5)

The optimality condition for xi = 0 is the one that helps
achieve sparsity. It can be further simplified depending on
g1 and g2 after simple algebras. For instance, it can be shown
that if g′2(0) = 0 then this condition becomes

|∇l(x)i| ≤ g′1(0) if xi = 0. (6)

For g2 of the form g2 = g1 − h, then this condition becomes

|∇l(x)i| ≤ h′(0) if xi = 0. (7)

These conditions allow a better understanding of why the
sparsity promoting terms discussed earlier are more agressive
in terms of sparsity. Indeed, for a classical `1 regularization,
we obtain Condition (6) with g′1(0) = λ, which boils down to
the classical `1 optimality conditions. But when using other
regularization terms, g1 or h tend to have larger derivatives in
0, making the condition for xi = 0 easier to respect and thus
inducing more sparsity.

For the sake of clarity, we explicitely derive the zero-
component optimality condition for the log-sum penalty
(LSP), where r(x) = λ

∑p
i=1 log(1 + |xi|/θ). The dif-

ference of convex functions r = r1 − r2 can be simply
taken as in Equation (2) with g1(y) = λ y and g2(y) =
λ{y − log(1 + y/θ)}. According to the above expres-
sion of g1 and g2 for LSP, g2 is of the form g1 − h, with
h(·) = log(1 + ·/θ), thus Condition (7) becomes

|∇l(x)i| ≤ λ/θ if xi = 0. (8)

For the `p penalty, for which g2 has a similar form, the upper
bound in Condition (7) is λp/θ. For the capped-`1 penalty,
denoted as r(x) =

∑p
i=1 λmin(|xi|, θ), we have the same

expression for g1, while g2(y) = λ (y − θ)+. Since g′2(0) =
0, the condition for a zero variable to be optimal is given by
Equation (6) with g′1(0) = λ.

Now that we have derived a necessary condition for a local
minimum of Problem (1), we are able to propose our active
set algorithm.

3. ALGORITHM

Our objective in this work is to derive an efficient algorithm
that outputs a critical point satisfying the above-given condi-
tions for very high-dimensional datasets. For this purpose, we
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Algorithm 1 Active set algorithm for non-convex optimiza-
tion based on optimality condition (7)
Inputs
- Initial active set ϕ = ∅

1: repeat
2: x← Solve Problem (1) with current active set ϕ
3: Compute r← |∇l(x)|
4: for k = 1, . . . , ks do
5: j ← arg maxi∈ϕ̄ ri
6: If rj > h′(0) + ε then ϕ← j ∪ ϕ
7: end for
8: until stopping criterion is met

propose an active set strategy that alternatively solves a mas-
ter problem, which correponds to Problem (1) restricted to a
limited number of variables (the active set), and then adds to
the active set inactive variables that violate the necessary con-
dition given in Equation (6) or (7). The active set strategy is a
classical tool in convex optimization [14] but its uses remain
limited when it comes to non-convex optimization. As far as
our knowledge goes, this is the first work that considers an
active set approach for sparse efficient non-convex learning
problems. This active set algorithm, given in Algorithm 1,
can be easily inferred from Condition (6) or (7) and is very
efficient when the solution of the optimization problem is ex-
tremely sparse. In a nutshell, we begin with the trivial solu-
tion x(0) = 0 and the corresponding active set ϕ = ∅ contain-
ing the set of variables such that xi 6= 0. At each iteration,
Problem (1) is solved on the data restricted to the active set
ϕ using a solver such as GIST [7] or SCP [10]. Then the
optimality conditions are checked and the ks variables in the
inactive set ϕ̄ that violate the most those conditions are added
to the active set. These steps are repeated until a convergence
criterion is met. In this work we stopped the algorithm when
all the optimality conditions on the unselected variables in ϕ̄
are respected up to a tolerance ε.

In order to have a more efficient algorithm, several vari-
ables can be added to the active set at each iteration. The
tolerance parameter ε also acts in practice as a thresholding
parameter because variables that only slightly violate the op-
timality conditions tend to stay at zero. Finally note that an
efficient warm-starting scheme can be used for solving the
master problem (Line 2 of the algorithm). For instance, the
GIST algorithm strongly benefits from initialization near op-
timality and can be used for solving this problem.

3.1. Related works and algorithms

Most approaches considered for solving the non-convex
problem given in Equation (1) are based on a majorization-
minimization (MM) approach. They usually consider a linear
or quadratic majorization of the non-convex penalty [4, 15, 9].
Other works such as [16] can handle non-convexity in the

data fitting term but keep a convex regularization. The re-
cent GIST [7] or SCP approaches [10] slightly differ from
the above cited works, as they also propose to majorize the
loss function. They both consider a quadratic majorization
of the differentiable loss function. The difference between
GIST and SCP relies then on how the non-convex penalty is
dealt with. SCP proposes again a majorization whereas GIST
uses proximal operator for handling it. The common point
of all these algorithms is that they have to deal with all the
variables during the optimization. For very high-dimensional
problems, this point can lead to computationally expensive
algorithms.

On the contrary, the active set algorithm we propose op-
timizes Problem (1) only on a few number of variables (by
using one of the above approaches, typically GIST) and after-
wards adds some variables that may be non-zero at optimum.
This strategy drastically reduces the computational complex-
ity in high dimension.

4. NUMERICAL EXPERIMENTS

In order to illustrate the advantages of using an active set
strategy for extremely sparse optimization problems, we
tested our approach on a generated dataset with full matrices
and two real life datasets with sparse feature matrices. In
all experiments we considered the common quadratic data
term l(x) = ||y − Ax||2 used for regression problems in
the machine learning community and signal estimation in
the signal processing community. The chosen non-convex
regularization term is the log-sum penalty.

Note that in all the experiments the regularization param-
eter is set to θ = 0.1 which leads to a strongly nonconvex
function that promotes sparsity more aggressively than the `1
regularization with less bias. The stopping condition param-
eter ε is set to 0.1 and the maximum number of features ks
added to the active set is set to 10. We compared the DC-lasso
proposed in [9] that is a re-weighted `1 scheme, the GIST
[7] non-convex gradient descent method and our proposed
active-set method using GIST for solving the inner problem
(AS-GIST). All simulations were computed using Octave on
Linux with a 2.60 GHz Intel processor and 64 GB of RAM1.

Generated dataset. The dataset is generated as follows. A
full matrix A ∈ Rn×p is drawn from the normal distribu-
tion and its columns are normalized to have unit norm. An
extremely sparse model is generated with only t true active
variables also drawn from a normal distribution. Finally an
observation y is generated by adding Gaussian noise to the
true model with a signal-to-noise ratio (SNR) of 30 dB. The
regularization parameter λ is selected so as to promote the se-
lection of approximately t variables in the estimated model.
The results correspond to the average computational time ob-
tained over 10 different generations of the data.

1Computed on http://calculs.unice.fr/
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Fig. 1. CPU time and final objective value on the generated
problem for a varying number of variables p. The standard
deviation is also reported on the plot with the dashed lines

We computed in Figure 1 the CPU time necessary to ob-
tain the solution of the optimization problem for n = 100,
t = 10 and a number of variables p varying from 100 to
107. DC-Lasso is clearly outperformed both by GIST and AS-
GIST. Moreover we can see that when p ≥ 1000, AS-GIST
is faster than GIST (up to 20 times for p = 107). A Wilcoxon
sign test with α = 0.05 was performed to compare the solu-
tions obtained by the three algorithms. GIST and AS-GIST
returned statistically equivalent objective values for all p but
DC-Lasso was statistically worse than both methods. We be-
lieve that this can be explained by the different initialization
used for both approaches, namely zero vector for GIST and
AS-GIST and Lasso solution for DC-Lasso.

Real life datasets We evaluated our algorithm on two real
life datasets available on the UCI Machine Learning Reposi-
tory. First, the URL Reputation dataset [17] consists in sev-
eral days of acquisition with n = 20 000 examples per day
with p ≈ 3.2 × 106 variables. Second, the Dorothea feature
selection dataset [18] contains n = 1150 and p = 105. Both
datasets are sparse and the relevant features are unknown.
In these experiments, we run the GIST and AS-GIST algo-
rithms with different values of the regularization parameter
λ in order to see their performances with different sparsity
ratios (DC-lasso was not considered here due to its limited
performance and important computational burden). The URL
dataset being naturally split in days, one model is learned
from each of the first 10 days. On the Dorothea dataset, due
to the small number of examples, 10 random splits of the data
are drawn with 1000 out of 1150 training examples. The ob-
jective values, CPU time and number of selected features are
averaged over the ten splits of data.

The performances in terms of CPU time and objective val-
ues are reported in Figure 2. We can see that AS-GIST is
more CPU efficient than GIST for large values of λ, i.e. for
sparser solutions (up to 500× for the URL dataset). In addi-
tion, while both methods give equivalent solutions for large λ,
the objective value of AS-GIST is clearly better for small λ.
This interesting fact is the result of the ε thresholding in our
algorithm, yielding sparser solutions than GIST and avoiding
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Fig. 2. CPU time (top) and objective value (bottom) for a
varying regularization parameter λ on the Dorothea (left) and
URL (right) datasets.
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Fig. 3. CPU time as a function of the number of selected
variables on the Dorothea (left) and URL (right) datasets.

spurious variables more often. Finally, the efficiency of the
algorithms with respect to the number of selected variables
is reported in Figure 3. It shows that, for a reasonable num-
ber of selected features (up to 1000), the active set strategy
is extremely efficient, while the efficiency of GIST displays
an almost constant behaviour with respect to the number of
selected features.

5. CONCLUSION

We propose in this work an efficient active set strategy for
non-convex sparse optimization. This approach sits on the
shoulder of the existing non-convex optimization algorithms
by improving their efficiency for very high dimensional prob-
lems. Numerical experiments show large computational gain
of up to 2 orders of magnitude. As future works, this method
can be extended to remote sensing and computer vision [19],
for instance by applying non-convex optimization to feature
selection [20].
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