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ABSTRACT

One of the early successful approaches to deal with the now classi-
cal `2 + `1 optimization formulation of sparse signal recovery (of-
ten known as the LASSO) was based on re-writing it as a bound-
constrained quadratic program (BCQP), which was then tackled us-
ing a gradient projection (GP) algorithm with a spectral (Barzilai-
Borwein) step choice. The resulting algorithm (called gradient pro-
jection for sparse reconstruction – GPSR) exhibited state-of-the-art
speed when it was introduced, but now, 6 years later, much faster al-
ternatives exist. In this paper, we revisit the BCQP formulation and
show how it can be efficiently dealt with using the alternating di-
rection method of multipliers (ADMM). We give preliminary exper-
imental evidence that this approach is competitive with the current
state-of-the-art, in a set of benchmark problems.

Index Terms— Sparse signal recovery, convex optimization, al-
ternating direction optimization, deconvolution, inpainting.

1. INTRODUCTION

This paper revisits the now very classical `2 + `1 problem,

min
x∈Rn

1

2
‖y −Ax‖22 + τ‖x‖1, (1)

where x ∈ Rn, y ∈ Rm, A is an m × n matrix (typically with
m ≤ n), τ is a nonnegative parameter, ‖v‖2 denotes the Euclidean
norm of v, and ‖v‖1 =

∑
i |vi| is the `1 norm of v. This formu-

lation is often used to identify sparse approximate solutions to the
underdetermined system y = Ax, and has become very familiar in
the past few decades, particularly in statistics, machine learning, and
signal/image processing. For brief historical accounts on the use of
the `1 penalty in statistics and signal processing, see [21], [28].

Problems with the form (1) arise in wavelet-based image/signal
reconstruction/restoration [16], [19], [20], [21]. In these problems,
matrix A usually has the form A = BW, where B is (the ma-
trix representing) the observation operator (e.g., a convolution with a
blur kernel, a tomographic projection, loss of samples), W contains
a wavelet basis or redundant dictionary (i.e., multiplying by W cor-
responds to performing an inverse wavelet transform), and x is the
vector of representation coefficients of the unknown image/signal.
The interest in problems of the form (1) was greatly amplified in the
past decade due to the central role that they play in the theory and
practice of compressed (or compressive) sensing (CS) [11], [14].

Of particular interest in signal processing contexts are problems
of the form (1), where matrix A is too large (and too dense) to be
handled explicitly, but it is still possible to compute matrix-vector
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products involving A (or its transpose) efficiently. In other words,
matrix A represents an operator (or a composition of several oper-
ators) for which there is an efficient algorithm (e.g., a convolution
with some kernel or some transform). This limitation precludes the
use of many off-the-shelf convex optimization algorithms and has
stimulated much research work devoted to finding efficient methods
for solving (1) is this type of scenario. Arguably, the standard algo-
rithm for solving (1) is the so-called iterative shrinkage/thresholding
(IST) algorithm (a.k.a. proximal-gradient) [19], [13], [12], which
has the well-known drawback of being very slow when A is poorly
conditioned. To address this issue, several accelerated versions of
IST have been proposed, namely by using two-step-type iterations
[5], [7], or spectral (Barzilai-Borwein – BB [4]) step-size selection
techniques [29].

Another class of algorithms that has seen a recent explosion of
interest to solve problems of the form (1) is based on augmented
Lagrangian formulations, in particular, the alternating direction
method of multiplers (ADMM) (see [10], for an introduction and
comprehensive review). In fact, for several problems of the form
(1), arising in sparsity-based recovery (such as signal/image de-
convolution, reconstruction from partial Fourier observations [26],
image inpainting, and others), the state-of-the-art algorithms are
based on ADMM [1], [2]. Intuitively, the excellent speed of these
methods can be traced to the fact that in each iteration they require
solving a linear system where the matrix is a regularized version
of the Hessian of the smooth term of (1), thus having a “Newton
flavour”, i.e., using second-order information. In fact, there has
been great recent interest in deriving and studying proximal-type
algorithms that make use, not only of first order information (gradi-
ent), but also of second order information (curvature/Hessian); these
methods are referred to as proximal-Newton [6], [25], [27].

One of the early approaches to deal with problem (1) started by
re-writing it as a bound-constrained quadratic problem (BCQP) [21],
[22], which was then addressed via a gradient projection algorithm
with a BB step-size choice. That method was proposed under the
name gradient projection for sparse reconstruction (GPSR) [21] and
was a state-of-the-art algorithm when it appeared. The goal of this
paper is to investigate the use of the ADMM algorithm in dealing
with the BCQP formulation of (1). As in ADMM applied directly to
the `2 + `1 [1], the resulting algorithm involves a matrix inversion;
in the BCQP formulation, this matrix is in fact a regularized version
of the Hessian of the whole objective, since the non-smooth `1 was
transformed into a bound-constraint. For this reason, the resulting
algorithm has some similarity with a projected regularized Newton
algorithm [24]; this connection deserves further study, which is left
for future work. We are specially interested in cases where the matrix
inversion mentioned above can be efficiently carried out, even when
the parameter of the ADMM algorithm changes along the iterations.

The rest of the paper is organized as follows. Section 2 reviews
the BCQP re-formulation of (1) and Section 3 reviews the ADMM.
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The application of ADMM to the BCQP is presented in Section 4,
where several implementation aspects are discussed. The instantia-
tion to imaging inverse problems is the topic of Section 5. Section 6
reports experimental results and Section 7 concludes the paper.
Note: we use the notation M∗ to represent the conjugate transpose
of a matrix A, which coincides with the transpose, if the matrix has
only real-valued elements.

2. THE BCQP FORMULATION

To express (1) as a BCQP [20], the variable x is split into its positive
and negative parts, denoted u and v, that is,

x = u− v, u ≥ 0, v ≥ 0, (2)

where ui = (xi)+ and vi = (−xi)+, for all i = 1, 2, . . . , n,
with (·)+ denoting the positive-part operator defined as (x)+ =
max{0, x}. We thus have ‖x‖1 = 1∗nu + 1∗nv, where 1n =
[1, 1, . . . , 1]∗, and (1) can be written as

min
u,v

1

2
‖y −A(u− v)‖22 + τ 1∗nu + τ 1∗nv,

s.t. u ≥ 0, v ≥ 0. (3)

Note that the `2-norm term is unaffected by adding the same
s ≥ 0 to both u and v. However such a shift increases the other
terms by 2 τ 1∗ns ≥ 0; consequently, at the solution of (3), ui = 0
or vi = 0, so that in fact ui = (xi)+ and vi = (−xi)+, for all
i = 1, 2, . . . , n. Problem (3) can be written in standard BCQP form,

min
z∈R2n

c∗z +
1

2
z∗Bz ≡ F (z),

s.t. z ≥ 0, (4)

where: z = [u∗, v∗]∗; c = τ 12n + [−b∗, b∗]∗; b = A∗y;

B =

[
A∗A −A∗A
−A∗A A∗A

]
= C∗C; (5)

and C = [A, −A].
Although the dimension of problem (4) is twice that of (1), this

increase in dimension has a minor impact. Matrix operations involv-
ing B can be performed more economically than its size suggests,
by exploiting its structure (5). For a given z = [u∗ v∗]∗,

Bz = B

[
u
v

]
=

[
A∗A(u− v)
−A∗A(u− v)

]
,

indicating that Bz can be found by computing the vector difference
u− v and then multiplying by A and A∗. Since∇F (z) = c + Bz
(the gradient of the objective function in (4)), computing∇F (z) re-
quires one multiplication by A and A∗; notice that c, which depends
on b = A∗y, is constant and can be pre-computed at the start of any
algorithm. Another common operation is to compute the objective
at a given z = [u∗, v∗]∗, which requires computing z∗Bz. Since
z∗Bz = (u − v)∗A∗A(u − v) = ‖A(u − v)‖22, this can be
obtained using a single multiplication by A.

3. THE ADMM

Consider the unconstrained optimization problem

min
z∈Rd

f1(z) + f2(Gz), (6)

where f1 : Rd → R̄ ≡ R ∪ {−∞,∞}, f2 : Rp → R̄, and
G ∈ Rp×d. The ADMM for this problem is shown in Fig. 1; its
convergence (in fact, of a generalized version thereof) was shown in
a seminal paper by Eckstein and Bertsekas [15], under quite weak
conditions: G ∈ Rp×d has full column rank; f1 : Rd → R̄ and
f2 : Rp → R̄ are closed, proper, convex functions. A recent and
comprehensive review of ADMM can be found in [10].

Algorithm ADMM
1. Set k = 0, choose µ > 0, u0, and d0.
2. repeat
3. zk+1 ∈ arg minz f1(z) + µ

2
‖Gz− uk − dk‖22

4. uk+1 ∈ arg minu f2(u) + µ
2
‖Gzk+1 − u− dk‖22

5. dk+1 ← dk − (Gzk+1 − uk+1)

6. k ← k + 1
7. until stopping criterion is satisfied.

Fig. 1. The ADMM algorithm.

Given a convex function g, its so-called Moreau proximity oper-
ator (MPO) [12], denoted proxg , is uniquely defined as

proxg(s) ≡ arg min
x

1

2

∥∥x− s
∥∥2
2

+ g(x). (7)

It is thus clear that line 4 of ADMM can be written as

uk+1 = proxf2/µ(Gzk+1 − dk).

For several functions, the corresponding MPO can be computed ex-
actly in closed form [12]; e.g., the well-known soft-thresholding
function is the MPO of the `1 norm. Of particular interest in this
paper is the indicator of a convex set C, ιC(x) = 0, if x ∈ C and
ιC(x) = +∞, if x 6∈ C. In this case, proxιC = PC is simply the
Euclidean projector onto C [12]. Due to the presence of matrix G in
the quadratic term of the optimization problem that defines line 3 of
ADMM, this step is not (in general) an MPO.

When applying ADMM, one of the central issues is the choice
of parameter µ, which may strongly affect its practical performance
[10]. Also in the theoretical analysis front, the effect on convergence
speed and the optimal choice of µ are subjects of active research,
with results only available for a few particular problems [9], [23].
A practical rule that was proposed in [10] aims at updating µ to
maintain a balance between the primal and dual residuals, which are
given by rk = Gzk−uk and sk = µG∗(uk−1−uk), respectively;
the rule consists in increasing (resp. decreasing) µ by some factor,
say γ, when ‖rk‖ becomes larger (resp. smaller) than ‖sk‖ by some
factor, say ξ. Finally, replacing vector Gzk+1 in lines 4 and 5 of
ADMM by αGzk+1 + (1 − α)zk, with 0 < α < 2, leads to over-
relaxation (α > 1) or under-relaxation (α < 1) [9], [10], [15], [23];
using α ∈ [1.5, 1.8] has been shown to speed up convergence [10].

4. ADMM FOR THE BCQP

To tackle the BCQP (4) using ADMM we re-write it as

min
z∈R2n

c∗z +
1

2
z∗C∗Cz + ιR2n

+
(z). (8)

Of course, there are many ways to map (8) into (6); a naı̈ve ob-
servation could suggest using f2(a) = 1

2
‖a‖22 and G = C, and
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consequently f1(z) = c∗z + ιR2n
+

(z). However, this choice would
lead to line 1 of ADMM (see Fig. 1) which would be itself a BCQP,
thus as hard as the original problem. A better choice (see also [10],
[23]) is f2(a) = ιR2n

+
(z), G = I, and f1(z) = c∗z + 1

2
z∗C∗Cz.

With this formulation, the resulting ADMM algorithm is as shown
in Fig.2, where we have also included the over-relaxation scheme
and the adaptation of parameter µ every δ iterations. Of course,
the Euclidean projection on the first orthant (in line 4) is simply the
component-wise positive part:

(
PR2n

+
(z)
)
i

= max{0, zi}.

Algorithm ADMM
1. Set k = 0, choose µ0 > 0, α ∈ (0, 2), γ > 1, ξ > 1,

δ ∈ N, u0, d0.
2. repeat
3. zk+1 = −(C∗C + µkI)

−1
(
c− µk(uk + dk)

)
4. uk+1 = PR2n

+

(
α zk+1 + (1− α)zk − dk

)
5. dk+1 ← dk − α zk+1 − (1− α)zk + uk+1

6. if mod(k, δ) = 0
7. r = ‖zk − uk+1‖
8. s = µk‖uk − uk+1‖
9. if r > ξs then µk = γ µk, uk+1 = γ uk+1

10. if s > ξr then µk = µk/γ, uk+1 = uk+1/γ
11. k ← k + 1
12. until stopping criterion is satisfied.

Fig. 2. The ADMM algorithm for the BCQP in (4).

The computational bottleneck of this algorithm is clearly the ma-
trix inversion in line 3, which we will now address. It may seem that
the move from an n-dimensional problem (1) to a 2n-dimensional
problem will seriously affect the cost of this inversion, which in gen-
eral grows (almost) cubically with the matrix dimension. We now
show that this is not so, by exploiting the matrix inversion lemma
(MIL) and the structure of matrix C = [A,−A]. Direct application
of the MIL yields (dropping the k subscript from µk)

(C∗C + µI)−1 =
1

µ

(
I−C∗

(
CC∗ + µI

)−1

C
)
.

Since CC∗ = 2AA∗, we further have that, when multiplying this
matrix by some vector z = [u∗,v∗]∗,

(C∗C+µI)−1z =
1

µ

(
I−

[
A∗

−A∗
](

2AA∗+µI
)−1

[A,−A]

)[
u
v

]
=

1

µ

[
u + A∗Q(µ)A(u− v)
v −A∗Q(µ)A(u− v)

]
,

where Q(µ) =
(
2AA∗+µI

)−1

. This shows that: (i) the matrix that
needs to be inverted is of dimension m ×m, where m ≤ n, often
m < n (e.g., in compressive sensing); (ii) the matrix-vector products
by matrices A, A∗, and Q(µ) are computed only once; (iii) all the
matrix-vector products involve dimensions no larger than n.

When µk = µ is fixed, matrix Q(µ) can (should) be pre-
computed and stored; in some cases, rather than computing Q(µ),
its inverse is factored (e.g., Cholesky) and the corresponding system
back-solved at each iteration [10]. If µk changes along the algo-
rithm, those strategies are not directly applicable. However, if it is
possible to obtain the singular value decomposition (SVD) of A,
i.e., A = USV∗, where U and V are unitary matrices and S is

diagonal, we can conveniently write

Q(µk) =
(
2AA∗ + µkI

)−1

= U
(
2S + µkI

)−1
U∗, (9)

where the matrix being inverted is diagonal. This equality shows
that we can pre-compute U and S and any subsequent update of
µk only requires recomputing a diagonal inversion, i.e., with cost
O(m). This is particularly useful in scenarios where many instances
of problem (1) are to be solved, all sharing the same matrix A and
only differing in y; this is the case, for example, in the sparse regres-
sion approach to hyper-spectral unmixing [8].

5. APPLICATION TO IMAGING PROBLEMS

This section shows how the algorithm in Fig. 2 can be conveniently
applied in several imaging problems (namely, periodic deconvolu-
tion, inpainting, and compressive Fourier imaging), following the
derivations in [1]. The essential issue in each case is the form of ma-
trix Q(µk) and its efficient computation. In all the cases, we adopt a
frame-based synthesis formulation [17], thus A = BW, where W
is assumed to be the synthesis operator of a normalized tight (Pase-
val) frame (thus WW∗ = I).

5.1. Periodic Deconvolution

If B models a periodic convolution, it can be written as B = F∗DF,
where F and F∗ represent the 2D discrete Fourier transform (DFT)
and its inverse, respectively, and D is a diagonal matrix containing
the DFT coefficients of the convolution kernel. In this case,

Q(µ) =
(
2F∗DFWW∗F∗D∗F+µI

)−1

= F∗
(
2|D|2 +µI

)−1
F,

which has the same form as (9), with the DCT matrix F replacing
U. In this case, no SVD is required, but only knowledge of the DFT
of the convolution kernel. Moreover, matrix-vector products by F
and F∗ are computed with cost O(n logn) using the fast Fourier
transform (FFT) and updates to µ only imply recomputing a diagonal
inverse (which has O(n) cost).

5.2. Image Inpainting

To model the loss of pixels, which leads to inpainting problems, ma-
trix B contains a subset of the rows of the identity matrix. Such a
matrix satisfies BB∗ = I, thus we have simply

Q(µ) =
(
2BWW∗B∗ + µI

)−1

=
1

2 + µ
I.

Thus, multiplying a vector by matrix Q(µ) simply corresponds to
multiplying it by a scalar, which can be updated with negligible cost.

5.3. Compressive Fourier Imaging

In this case, B = MF, where M is similar to the observation ma-
trix in the inpainting problem (thus MM∗ = I), and F is the DFT
matrix. Consequently, as in the inpainting case,

Q(µ) =
(
2MFWW∗F∗M∗ + µI

)−1

=
1

2 + µ
I.
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6. EXPERIMENTS

In our experiments, we compare the proposed algorithm with the
following baselines: ADMM directly applied to problem (1) (see
[1], [10]), enhanced with over-relaxation with α = 1.8; the fast
IST algorithm (FISTA) [5]; the sparse reconstruction by separable
approximation (SpaRSA) algorithm [29]; the monotonic version of
the GPSR algorithm [21]. The proposed algorithm, herein referred
to as BCQP-ADMM, is parametrized as follows: µ0 = 0.1, α =
1.8, δ = 10, ξ = 10, γ = 2. The initialization is as follows:
u0 =

[(
(A∗y)+

)∗
,
(
(−A∗y)+

)∗]∗, d0 = 0. The Q(µk) matrix
is computed and updated according to (9) (in both the ADMM and
BCQP-ADMM algorithms).

Fig. 3. Time evolution of the relative error in the objective function
(see text for definition) in the compressive sensing experiment.

In the first experiment, we consider a typical CS toy problem:
reconstructing a sparse vector from fewer observations than its di-
mension. In this example, A is a 211 × 212 matrix filled with
i.i.d. standard Gaussian samples, x is a 212-dimensional sparse
vector with 150 randomly located non-zero (randomly chosen in
{−1,+1}) components. Vector y is obtained by adding white
Gaussian noise to Ax and the regularization parameter τ is set to
10−4‖A∗y‖∞, which corresponds to very weak regularization (see
[21] for details). Fig. 3 plots (in log scale) the time evolution of the
relative error in the objective function (Fk − F ?)/F ?, where Fk
is the objective function value at iteration k and F ? is an estimate
of its optimal value, obtained by previously running FISTA for a
very large number of iterations. The plot shows that ADMM and
BCQP-ADMM have remarkably similar behaviour, and clearly out-
perform the other methods. It is also visible that the ADMM and
BCQP-ADMM algorithms have an initial delay associated to the
computation of the SVD, but then quickly overtake the others. All
the algorithms recover the original signal almost perfectly.

The second and third experiments use two benchmark image
processing problems: deblurring and inpainting. In both cases, ma-
trix W (see Section 5) is the synthesis operator of a 5-levels re-
dundant (Daubechies-4) wavelet frame. In the deblurring example,
B corresponds to the convolution with a 9 × 9 uniform kernel and
noise of standard deviation 0.56 is added to the blurred image; in the
inpainting problem, matrix B models the loss of 40% of the image
pixels and noise of standard deviation 5 is added to the observed pix-
els (see [1] for further details about these benchmark problems). The
plots in Figs. 4 and 5 reveal the same general conclusions as those of

Fig. 4. Time evolution of the relative error in the objective function
(see text for definition) in the image deblurring experiment.

Fig. 5. Time evolution of the relative error in the objective function
(see text for definition) in the image inpainting experiment.

the first experiment: both ADMM and BCQP-ADMM outperform
the other methods and have a remarkably similar behaviour.

7. CONCLUSIONS

In this paper we have revisited the BCQP formulation of the `2 + `1
optimization problem, introduced earlier in the context of sparse sig-
nal/image recovery [21]. Rather than the original gradient projec-
tion algorithm originally considered in [21], we have shown how the
ADMM can be efficiently instantiated and implemented to address
this problem. A preliminary set of experiments have shown that the
ADMM applied to the BCQP formulation is competitive with the
ADMM directly applied to the `2 + `1 problem.

Ongoing work includes trying to extend recent work on the op-
timal selection of the µ parameter of the ADMM algorithm applied
to quadratic programming problems [23], for the case (not covered
by the analysis in [23]) where the Hessian is not invertible. An-
other direction of ongoing research is the adaptation to the BCQP
formulation of the method proposed in [3] to deal with non-periodic
deconvolution problems.
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