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ABSTRACT

We consider distributed optimization where /N nodes in a
generic, connected network minimize the sum of their indi-
vidual, locally known, convex costs. Existing literature pro-
poses distributed gradient-like methods that are attractive due
to computationally cheap iterations and provable resilience
to random inter-node communication failures, but such meth-
ods have slow theoretical and empirical convergence rates.
Building from the centralized Nesterov gradient methods,
we propose accelerated distributed gradient-like methods and
establish that they achieve strictly faster rates than existing
distributed methods. At the same time, our methods maintain
cheap iterations and resilience to random communication fail-
ures. Specifically, for convex, differentiable local costs with
Lipschitz continuous and bounded derivative, we establish
(with respect to the cost function optimality) convergence
in probability and convergence rates in expectation and in
second moment.

Index Terms— Distributed optimization, convergence
rate, random networks, Nesterov gradient, consensus

1. INTRODUCTION

We develop distributed, Nesterov-like, gradient algorithms
and establish their convergence and convergence rate guar-
antees on random networks. We assume a standard N-node
random network, e.g., [1, 2], and distributed optimization
models, e.g., [3, 1]. The network model assumes a sequence
of independent, identically distributed (i.i.d.) N x N weight
matrices {W(k)}, where W (k) respects the sparsity of the
inter-node communication pattern at time k. The matrices
W (k) are drawn from the set of symmetric, stochastic matri-
ces with positive diagonals, and the graph that supports the
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expectation of W (k) is connected. The distributed optimiza-
tion model assumes that /N nodes cooperatively minimize the
sum SN fi(x) of their locally known convex costs with
respect to the global variable € R¢; such model encom-
passes many applications, including distributed inference,
e.g., [2], and source localization, e.g., [4], in sensor networks
and distributed learning of a linear classifier, e.g., [5]. For
this network-optimization model, existing literature develops
distributed gradient methods, e.g. [3], which are attractive
due to easy-to-implement, computationally cheap iterations
and provable resilience to random communication failures.
However, these methods have slow theoretical and practical
convergence rates.

We design two accelerated distributed gradient methods
for random networks, building from the centralized Nesterov
gradient algorithm [6]. Our methods enjoy computationally
cheap iterations and resilience to communication failures,
like the methods in, e.g., [3], but they have strictly faster rates
than the methods in [3]. We achieve this when the costs f;’s
are convex, differentiable, and have Lipschitz continuous and
bounded derivatives. Our two algorithms, termed mD-NG
and mD-NC, modify the D-NG and D-NC methods that we
previously proposed in [5] for static networks. (Here, mD—
NG abbreviates “Modified Distributed Nesterov Gradient,”
and mD-NC abbreviates ‘“Modified Distributed Nesterov
gradient with Consensus iterations.”) mD-NG achieves rates
O(logk/k) and O(log K/K) in the expected optimality gap
at the cost function, where k is the number of per-node
gradient evaluations and /C is the number of per-node (2d-
dimensional) vector communications. mD-NC achieves rates
O(1/k?) and O(1/K2%¢), where ¢ > 0 is an arbitrarily small
positive number. For comparison, [3] cannot achieve a rate (in
a worst-case sense) better than Q(k~2/3) and Q(K~2/3), [5]
(See the last paragraph in Section 1 for the meaning of sym-
bols O and €).) We further show that, with both mD-NG and
mD-NC, optimality gap at the cost function converges to zero
in probability, and with mD-NC also almost surely. Finally,
for a special case of spatially independent link failures, we
find with both methods the rates of convergence in the ex-
pected squared optimality gap at the cost (second moment’s

1527



convergence rate).

We briefly comment on the related literature. Refer-
ence [3] proposes standard distributed gradient methods
and analyzes them for deterministically time-varying net-
works, [7] analyzes these methods for asynchronous gos-
sip protocols, and [1] analyzes them for random networks.
Reference [8] proposes a different, distributed dual aver-
aging method, and analyzes it on both static and random
networks. Reference [9] proposes an accelerated, Nesterov-
like, distributed proximal gradient method and analyzes it for
deterministically varying networks. In summary, our work
contrasts with the literature by simultaneously considering: 1)
accelerated, Nesterov-like gradient methods, and 2) random
networks, and by establishing convergence and convergence
rate guarantees for such scenario.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the model that we assume and presents our
mD-NG and mD-NC distributed algorithms. Section 3 states
our convergence results on the cost function’s optimality gap:
convergence in probability (and almost sure convergence with
mD-NC), as well as convergence rates in expectation and in
second moment. We conclude in Section 4.

Throughout, we use the following notation. Denote by:
R the d-dimensional real space: A, or [A]y, the (I,m)
entry of A; [a];., the selection of the I-th, (I + 1)-th, -- -,
m-th entries of vector a; || - || the vector (matrix) Euclidean
(spectral) norm of its vector (matrix) argument; \;(-) the i-
th largest eigenvalue; [a] the smallest integer greater than or
equal to a real scalar a; V¢(x) the gradient at = of a dif-
ferentiable function ¢ : RY 5 R, d > 1: and P(-) and
E[] the probability and expectation, respectively. For two
positive sequences 7, and x,, we have: n, = O(x,) if
lim sup,,_, % < 005 N = Q(xp) if lim inf,, % > 0.

2. MODEL AND ALGORITHMS

Subsection 2.1 introduces the network and optimization mod-
els that we assume. Subsection 2.2 presents the mD-NG al-
gorithm, and Subsection 2.3 presents mD-NC.

2.1. Model

Optimization model. Nodes solve the following problem un-
constrained:

N
minimize Zfz(x) =: f(z). (1)

i=1

The function f; : R? — R is known only by node ¢, Vi, and
it obeys the following.

Assumption 1 (Optimization model) (a) (Solbability) There
exists a solution x* € R? such that f(z*) = f* :=
inf epa f(2).

(b) (Lipschitz continuous gradient) For all 4, f; is convex,
differentiable, and has Lipschitz continuous gradient with
constant L € [0,00): ||V fi(z) — Vfi(y)|| < Lljz —
yll, Va,y € R

(c) (Bounded gradient) There exists a constant G € [0, 00)
such that, Vi, ||V f;(z)|| < G, Vz € R%

Examples of the f;’s that obey Assumption 1 are logistic, Hu-
ber, and fair losses, see [5].

Network model. The inter-node communication pat-
tern at time step k is described by a random N x N sym-
metric, stochastic weight matrix W (k), in the sense that
W;;(k) > 0 if and only if nodes ¢ and j communicate at
time step k. Define the undirected graph G := (N, FE),
where E = {{i,j}: E[W;;(k)] >0, ¢ < j}. In words, G
collects all pairs of nodes that communicate with a non-zero
probability. We impose the following assumption.

Assumption 2 (Random network) We have:
(a) The sequence {W(k)}%2, isiid.

(b) Almost surely (a.s.), W (k) are symmetric and stochastic
(and hence are doubly stochastic), with strictly positive
diagonal entries.

(c) There exists w > 0 such that, foralli,5 =1,--- , N, as.
Wij (k) ¢ (0,w).

(d) The graph G is connected.

The entries W;;(k), {i,j} € E, may take the value zero,
but are greater than zero with positive probability; whenever
W;; (k) takes a positive value, this value is at least w.

For future reference, introduce:

7= (Ao (E[W2(k)]))"2.

This quantity measures the speed of consensus (in the mean
squared sense) driven by the product W (k)W (k—1)..W(1).

2)

2.2. Algorithm mD-NG

We now present our mD-NG algorithm. Each node, over it-
erations k, maintains its solution estimate z;(k) € RY, and
an auxiliary variable y;(k) € R? Given the initialization
2;(0) = y;(0) € R%, 2;(0) arbitrary, the update at iteration k,
k=1,2,..,1s:

zi(k) =Y Wij(k)y;(k — 1) — ax1 V fi(yi(k — 1))

Jj€0; (k)
3
yi(k) = (14 Bp_1) wi(k) —Br-1 Y Wij(k)a;(k — 1),
JEO; (k)
4
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In (3)—(4), O;(k) = {j : W;j(k) > 0} is the random neigh-
borhood of node 4, including node ; the step-size o and the
sequence Oy, k = 0, 1, ..., are given by:
c 1 k

“her e M Tpam @
At iteration k, node ¢ broadcasts z;(k — 1) and y;(k — 1) to
all its neighbors and receives z;(k — 1) and y;(k — 1) from
all current neighbors j € O;(k) — {i}. Upon reception, node
i updates x;(k) via (3) and y; (k) via (4).

It is instructive to compare the mD-NG algorithm for ran-
dom networks with its precursor D-NG in [5]. D-NG is pro-
posed for static networks and is the same as mD-NG, except
that it replaces the term } . (Wi (k) 2 (k—1) in (4) with
x;(k — 1). In other words, mD-NG, when compared with D—
NG, introduces an additional per-node communication at each
iteration k. This allows with mD-NG for structural robust-
ness to random variations in W (k). In contrast with mD-NG,
D-NG may diverge when the network is random; we refer to
a companion journal paper [10] for details. This interesting
difference between mD-NG and D-NG may be, in a certain
sense, related to the difference between adapt-then-combine
and combine-then-adapt methods studied in [11].

873

2.3. Algorithm mD-NC

Algorithm mD-NC operates in two time scales, outer itera-
tions k and inner iterations s. There are 7, inner iterations at
the outer iteration k, where we set (recall iz in (2)):

{3 longrlogN—‘
T = | ———7"7="] .

on T (6)
—log i

For convenience, we introduce a two index notation W (k, s)
for the random weight matrix that describes the communi-
cation pattern at inner iteration s and outer iteration k. We
order the weight matrices lexicographically in the sequence
asW(k=1s=1),Wk=1s=2),--- Wk=1s=
T1),--+,W(k = 2,s = 1),---, and let the sequence obey
Assumption 2.

The mD-NC method is summarized in Algorithm 1. It
uses a constant step-size « < 1/(2L). Each node ¢ maintains,
over outer iterations k, its solution estimate z;(k) € R and
an auxiliary variable y;(k) € RY. At each outer iteration k,
nodes run a consensus algorithm with 7 (inner) iterations;
each inner iteration requires, per node, a 2d-dimensional
broadcast transmission to all neighbors (See Algorithm 1
for details.) Hence, major differences between mD-NG and
mD-NC are that: 1) mD-NG uses a diminishing step-size,
while mD-NC uses a constant step-size; and 2) mD-NG ef-
fectively has one consensus round per k, while mD-NC has
multiple (73) consensus rounds per k.

We close this Section by noting that, with both our meth-
ods, we assumed a certain global knowledge by all nodes, ac-
quired beforehand in a network training period. Specifically,

Algorithm 1 mD-NC
1: Initialization: Node 4 sets x;(0) =y;(0) € R%; and k = 1.
2: Node 7 calculates xga)(k) =yi(k—1) — oV fi(yi(k — 1)).
3: (Consensus) Nodes run average consensus on x;(s, k), initial-

-
ized by xi(s =0,k) = (ml(-a)(k)—r,mi(k — l)T)

Xi(S, k): Z Wij(k7 S)Xj(s -1, k)a s=1,2,-- 7k,
J€0; (k)
with 7 in (6), and set z; (k) := [xi(s = %, k)];., and 2" (k—
1) := [xi(s = Tk, k)] 41,0 4 (Here [a]i.m is a selection of [-th,
[ + 1-th, - - - , m-th entries of vector a.)
4: Node 7 calculates y; (k)=(1 + Br—1)zi(k)—Br-1 mgb)(k -1).
5: Set k — k + 1 and go to step 2.

with mD-NG, all nodes know the gradient’s Lipschitz con-
stant L to set the step-size in (5); with mD-NC, nodes know
L to set the step-size « < 1/(2L), and the number of nodes N
and the quantity ;1 := (Ao (E[WQ(k)D)l/Q, to set 74 in (6).
We can modify our methods and relax these prior knowledge
requirements such that the methods still provable converge,
at rates that are close to the ones presented in this paper; for
details, we refer to [10].

3. CONVERGENCE ANALYSIS

In this Section, we characterize with both mD-NG and mD-
NC the optimality gap f(z;) — f* > 0 at any node i, with
respect to the number of per-node gradient evaluations k£ and
per-node (2d-dimensional) communications K. Note that,
with mD-NG, we have that £ = K, i.e., one per-node com-
munication corresponds to one per-node gradient evaluation.
With mD-NC, 7, (see (6)) per-node communications corre-
spond to one per-node gradient evaluation; it is easy to show
that £ = O(klog k).

We first state our results on the convergence rate in the ex-
pected optimality gaps with mD-NG and mD-NC. In subse-
quent results, & denotes an arbitrarily small positive number.

Theorem 1 (Convergence rates in expectation) Let Assump-
tions 1 and 2 hold. Then, at any node 7, the expected optimal-

ity gap E [f (w;)] — f* is:
(a) With mD-NG: O(log k/k) and O(log K/K);
(b) With mD-NC: O(1/k?) and O(1/K?¢).

A proof of Theorem 1, as well as explicit constants in the es-
tablished rates, can be found in [10]. Theorem 1 indicates that
the convergence rates do not depend on the underlying ran-
dom network statistics. However, the convergence constants
actually depend on 1z in (2). From Theorem 1, we can see that
mD-NC achieves faster theoretical rates than mD-NG. Typ-
ically, in simulations, mD-NG actually converges faster for
practical accuracies, see [10].

1529



A direct corollary of Theorem 1, through an application of
Markov inequality, is the convergence in probability of mD—
NG and mD-NC. Furthermore, using the technique in, e.g.,
([12], Subsection IV=A), it can be shown that mD-NC also
converges almost surely (a.s.)

Corollary 2 (Convergence in probability and a.s. convergence)

Let Assumptions 1 and 2 hold. Then, at any node ¢:
(a) With mD-NG: P (f(x;) — f* >¢€) = 0ask — oo;

(b) With mD-NC: P (f(z;) — f* >¢) — 0as k — oo, and
P (limg oo (f(x;) — f*) =0) = 1.

Finally, we establish with both methods convergence rates in
the second moment, for a special case when the link failures
are spatially independent. A proof of the Theorem below can
be found in [10].

Theorem 3 (Convergence rates in second moment) Let As-
sumptions 1 and 2 hold. Further, assume that the random
variables W;; (k) that correspond to different links {7, j} € E
are mutually independent. Then, at any node ¢, the expected
squared optimality gap E [(f(z;) — f*)?] is:

(a) With mD-NG: O (1o§§ k) and O (1o’g;2 )

(b) With mD-NC: O () and O (5rts¢ )-

We interpret Theorem 3 for mD-NG, while a similar inter-
pretation is in place for mD-NC also. Theorem 1 says that
ex = (f(zi(k)) — ) 101;;1@ is, in expectation, upper bounded
by a certain constant C' > 0, for all k. Theorem 3 strengthens
the latter claim by saying that the second moment of ¢y, is also
upper bounded by a constant C’ > 0.

4. CONCLUSION

We considered distributed optimization over random net-
works, where the goal for each node is to minimize the
sum of locally known nodes’ convex costs. We design two
distributed Nesterov-like gradient methods, referred to as
mD-NG and mD-NC, and we characterize for both methods
the optimality gap at the cost function at any node ¢, with
respect to the number of per-node gradient evaluations &k and
per-node communications /C. Specifically, we show with both
methods: 1) convergence in probability (and also almost sure
convergence for mD-NC); 2) convergence rates in expec-
tation; and 3) convergence rates in the second moment for
spatially independent link failures.
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