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ABSTRACT

Many inverse problems require to minimize a criterion being the

sum of a non necessarily smooth function and a Lipschitz differen-

tiable function. Such an optimization problem can be solved with the

Forward-Backward algorithm which can be accelerated thanks to the

use of variable metrics derived from the Majorize-Minimize prin-

ciple. The convergence of this approach is guaranteed provided that

the criterion satisfies some additional technical conditions. Combi-

ning this method with an alternating minimization strategy will be

shown to allow us to address a broad class of optimization problems

involving large-size signals. An application example to a nonconvex

spectral unmixing problem will be presented.

Index Terms— Block coordinate algorithm, Forward-Backward

algorithm, Nonconvex optimization, Nonsmooth optimization,

Large-scale problems.

1. INTRODUCTION

In the context of inverse problems, an estimation of the

object of interest can be efficiently obtained by solving the

following optimization problem :

minimize
x∈RN

(G(x) = F (x) +R(x)) , (1)

whereF is a data-fidelity term, andR is a regularization func-

tion. In this paper, we focus on the case when F : RN → R

is a differentiable function and R : RN → (−∞,+∞] is a

proper lower semicontinuous function, which may be nons-

mooth. For example, the latter function may model a hard

constraint on the target signal or it may be a sparsity pro-

moting measure. A standard approach in this context consists

of using the Forward-Backward (FB) algorithm [1–4], which

alternates a gradient step on F and a proximal step on R.

In the case of large scale inverse problems such as those

encountered in image restoration, one major concern is to find

an optimization algorithm able to deliver reliable numerical

solutions in a reasonable time. As many first-order minimiza-

tion methods, the FB algorithm may suffer from slow conver-

gence [1]. A possible way to accelerate its convergence is to
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modify the underlying metric at each iteration thanks to a pre-

conditioning matrix, giving rise to the so-called Variable Me-

tric Forward-Backward (VMFB) algorithm [1, 5–12].

When the regularization function has a block separable

structure, another efficient strategy for solving (1) is to alter-

nate between blocks. The Block Coordinate Descent (BCD)

algorithm is obtained when, at each iteration, G is minimi-

zed exactly within the current block [13]. As pointed out in

[13], the BCD algorithm is not guaranteed to converge un-

der the sole assumption that the criterion is convex with res-

pect to each block. In the proximal version of the BCD algo-

rithm [14], this limitation is overcome. The convergence of

its iterates has been established in [15] for a non necessarily

convex criterion, and further generalized in [4] to the case of

a variable metric. For more flexibility, at each iteration, it is

often easier to replace the proximal step by a FB step which

leads to the so-called Block Coordinate Forward-Backward

(BC-FB) algorithm [16–20]. Recently, the convergence to a

critical point of (1) has been established in [20] when F and

R are not necessarily convex and when the blocks are updated

following a cyclic rule.

In this paper we present a Block Coordinate Variable Me-

tric Forward-Backward (BC-VMFB) algorithm, which com-

bines the VMFB algorithm [11] with the alternating mini-

mization approach of BC algorithms. Up to the best of our

knowledge, the convergence of BC-VMFB has only been in-

vestigated for convex functions F and R, and a random rule

on the blocks [21, 22]. Our contribution is to generalize the

BC-VMFB algorithm to the case when the criterion is non

necessarily convex in the context of an essentially cyclic rule

(i.e., blocks can be updated in an arbitrary manner as far as

each of them is updated at least once within a given number

of iterations).

The rest of the paper is organized as follows : Section 2

introduces the problem formulation. Section 3 describes the

proposed BC-VMFB algorithm and investigates its conver-

gence properties. A discussion of the algorithm performance

by means of experiments concerning a large-size hyperspec-

tral unmixing problem is provided in Section 4. Finally, some

conclusions are drawn in Section 5.
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2. PROBLEM FORMULATION

2.1. Problem formulation

We consider Problem (1) where G is coercive (i.e.

lim‖x‖→+∞G(x) = +∞) and F is differentiable with an

L-Lipschitzian gradient (L > 0) on the domain domR of

functionR, i.e.
(
∀(x, y) ∈ (domR)2

)
‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖,

where || · || denotes the standard Euclidean norm of RN , and

∇F is the gradient of F . Moreover, we assume a block se-

parable structure on R. More precisely, let us define an in-

teger J ≥ 2 and some positive integers N1, . . . , NJ such

that
∑J
j=1Nj = N . Any element x of the product space

R
N1 × . . . × R

NJ is denoted hereafter by x =
(
x(j)

)
1≤j≤J

,

where, for every j ∈ {1, . . . , J}, x(j) ∈ R
Nj . Then, we as-

sume that R reads

(∀x ∈ R
N ) R(x) =

J∑

j=1

Rj(x
(j)), (2)

where, for every j ∈ {1, . . . , J}, Rj : R
Nj → (−∞,+∞]

is proper, lower semicontinuous, bounded from below by an

affine function, and its restriction to its domain is continuous.

Moreover, for every j ∈ {1, . . . , J}, we denote by  the com-

plementary set of j on {1, . . . , J}, i.e.  = {1, . . . , J} \ {j}.

2.2. Optimization tools

Let us recall some definitions and the notation that will be

used throughout the paper. We define the weighted norm :

(∀x ∈ R
M ) ‖x‖U = 〈x, Ux〉

1/2
, (3)

where U ∈ R
M×M is some symmetric positive definite

(SPD) matrix, and 〈·, ·〉 denotes the usual scalar product. The

proximity operator ( [23, Sec. XV.4], [24] and [4]) is defined

as follows :

Definition 2.1. Let ψ : RM → (−∞,+∞] be a proper, lo-

wer semicontinuous function, let U ∈ R
M×M be a SPD ma-

trix, and let x ∈ R
M . The proximity operator of ψ at x re-

lative to the metric induced by U is given by proxU,ψ(x) =

Argmin
y∈RM

ψ(y) + 1
2‖y − x‖

2
U .

The following definition is useful to deal with a noncon-

vex cost function [3, 4, 11, 15, 20]. As emphasized in [3], it is

satisfied for a wide class of functions, such as, in particular,

real analytic and semi-algebraic functions.

Definition 2.2. Let ψ : RM → (−∞,+∞] be a proper, lower

semicontinuous function.ψ satisfies the Kurdyka-Łojasiewicz

(KL) inequality iff, for every ξ ∈ R, and, for every bounded

subset E of RM , there exist three constants κ ∈ (0,+∞),
ζ ∈ (0,+∞) and θ ∈ [0, 1) such that ‖t‖ ≥ κ|ψ(x)−ξ|θ , for

every t ∈ ∂ψ(x), and for every x ∈ E such that |ψ(x)− ξ| ≤
ζ (with the convention 00 = 0).

3. PROPOSED METHOD

3.1. BC-VMFB algorithm

An efficient approach for solving the minimization pro-

blem (1)-(2) consists of using the BC-VMFB algorithm :

Algorithm 1 BC-VMFB algorithm.

For every ℓ ∈ N, let γℓ ∈ (0,+∞).
Let x0 ∈ domR.

Iterations :
For ℓ = 0, 1, . . .

Let jℓ ∈ {1, . . . , J}.
Let Ajℓ(xℓ) ∈ R

Njℓ
×Njℓ be a SPD matrix.

x̃
(jℓ)
ℓ = x

(jℓ)
ℓ − γℓAjℓ(xℓ)

−1∇jℓF (xℓ),

x
(jℓ)
ℓ+1 ∈ proxγ−1

ℓ
Ajℓ

(xℓ),Rjℓ

(
x̃
(jℓ)
ℓ

)
,

x
(ℓ)
ℓ+1 = x

(ℓ)
ℓ .

In the above algorithm, for every ℓ ∈ N, ∇jℓF (xℓ) ∈ R
Njℓ is

the partial gradient of F with respect to x(jℓ) computed at xℓ.

In other words, at each iteration ℓ, block jℓ is activated and

a VMFB step is performed on the associated variables, while

all the other blocks with indices in ℓ are kept unchanged.

In the particular case when a single block is used (J =
1), Algorithm 1 is equivalent to the VMFB algorithm [11].

In addition, if A1(xℓ) ≡ IN , where IN denotes the identity

matrix of RN , then the usual FB algorithm is recovered.

In general, the proximity operator relative to an arbitrary

metric does not have a closed form expression. Although it

is not detailed in this paper, it is worth mentioning that an

inexact version of Algorithm 1 can be derived.

3.2. Assumptions

Matrices (Ajℓ(xℓ))ℓ∈N serving to define some appropriate

variable metric will play a central role in the convergence ana-

lysis of Algorithm 1. More specifically, these matrices fulfill

the following so-called majorization condition :

Assumption 3.1.

Let ℓ ∈ N and let jℓ ∈ {1, . . . , J}. The quadratic function

defined as : For every x(jℓ) ∈ R
Njℓ ,

Qjℓ(x
(jℓ) | xℓ) = F (xℓ) +

〈
x(jℓ) − x

(jℓ)
ℓ ,∇jℓF (xℓ)

〉

+
1

2
‖x(jℓ) − x

(jℓ)
ℓ ‖2Ajℓ

(xℓ)
,

is a majorant function of the restriction of F to its jℓ-th block

on domRjℓ , i.e., for every x(jℓ) ∈ domRjℓ ,

F (x
(1)
ℓ , . . . , x

(jℓ−1)
ℓ , x(jℓ), x

(jℓ+1)
ℓ , . . . , x

(J)
ℓ )

≤ Qjℓ(x
(jℓ) | xℓ).

Moreover, the eigenvalues of Ajℓ(xℓ) are lower and upper

bounded by positive values.
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Let us point out that Assumption 3.1 is not restrictive

since it is satisfied when, for every ℓ ∈ N, Ajℓ(xℓ) = L INjℓ
.

However, in order to obtain good numerical performance, the

matrices (Ajℓ(xℓ))ℓ∈N should be simple to compute and built

in such a way that, for every ℓ ∈ N, the quadratic function

Qjℓ(· | xℓ) is as close as possible to the restriction of F to

its jℓ-th block. Some useful techniques for constructing such

efficient metrics are presented in [25] for some subclasses of

functions F .

In order to ensure that each block is updated an infinite

number of times, we also make the following assumption :

Assumption 3.2.

Blocks (jℓ)ℓ∈N are updated following an essentially cyclic

rule, i.e., there exists K ≥ J such that, for every ℓ ∈ N,

{1, . . . , J} ⊂ {jℓ, . . . , jℓ+K−1}.

Note that the usual cyclic rule defined, for every ℓ ∈ N, by

jℓ − 1 = ℓ mod (J), satisfies Assumption 3.2 with K = J .

Finally, we suppose that, for every ℓ ∈ N, the stepsize γℓ is a

positive real satisfying the following assumption :

Assumption 3.3.

One of the following statements holds :

(i) There exists (γ, γ) ∈ (0,+∞)2 such that, for every ℓ ∈
N, γ ≤ γℓ ≤ 1− γ.

(ii) For every j ∈ {1, . . . , J}, Rj is a convex function and

there exists (γ, γ) ∈ (0,+∞)2 such that, for every ℓ ∈
N, γ ≤ γℓ ≤ 2− γ.

3.3. Convergence results

The proposed metric construction leads to the following

descent property, describing the behaviour of (G(xℓ))ℓ∈N,

where (xℓ)ℓ∈N is a sequence of iterates generated by Algo-

rithm 1 :

Proposition 3.1. [26] Under Assumptions 3.1-3.3, there

exists µ ∈ (0,+∞) such that, for every ℓ ∈ N,

G(xℓ+K) ≤ G(xℓ)−
µ

2
‖χℓ‖

2, (4)

where ‖χℓ‖
2 =

∑K−1
k=0 ‖xℓ+k+1 − xℓ+k‖

2, and K is the

constant given in Assumption 3.2.

Our main result concerning the asymptotic behaviour of

Algorithm 1 is provided by the following theorem :

Theorem 3.1. [26] Assume that Assumptions 3.1-3.3 hold

and that G satisfies the KL inequality. Then the sequence

(xℓ)ℓ∈N converges to a critical point x̂ of G. Moreover,(
G(xℓ)

)
ℓ∈N

is a nonincreasing sequence converging toG(x̂).

4. APPLICATION TO HYPERSPECTRAL

UNMIXING

4.1. Problem formulation

In this section, we apply the proposed algorithm to the

problem of hyperspectral data unmixing. Let us consider a

hyperspectral data set Y ∈ R
S×M , modeling a set of images

in R
M (columnwise reshaped), acquired in S different spec-

tral bands. We assume the following linear mixing model :

Y = U V + E, (5)

where the columns of U ∈ R
S×P represent spectra of P

distinct components (endmembers) available in the image,

V ∈ R
P×M their respective proportions (abundances) at

each pixel, and E ∈ R
S×M is the measurement noise. The

problem of unmixing consists of estimatingU and V from the

observation Y . Although standard unmixing approaches are

supervised, in the sense that the endmember spectra compo-

sing U are assumed to be part of an available spectral library

or provided by an endmember extraction algorithm [27–30],

there is an increasing interest in joint estimation methods

based on nonnegative matrix factorization (NMF) [30]. In the

standard NMF approach, U and V are estimated thanks to

the minimization of a least squares objective function, under

positivity constraints on the elements of both matrices [31].

As pointed out in [30, 32], a significant improvement of the

quality of the results is obtained by incorporating some a

priori knowledge on the sought matrices. Here, we focus on

the case when each endmember spectra is a weighted combi-

nation of few components of a given large dictionary of size

Q > P , here modeled by a matrix Ω ∈ R
S×Q. Thus, the

observation model is re-expressed as

Y = ΩT V + E, (6)

where T ∈ R
Q×P is the matrix of components of the end-

member spectra assumed to be sparse.

4.2. Proposed algorithm

Estimates T̂ and V̂ of T and V result from

minimize
T ∈ RQ×P

V ∈ RP×M

(G(T, V ) = F (T, V ) +R1(T ) +R2(V )), (7)

where F (T, V ) = 1
2‖Y −ΩTV ‖2F , ‖ · ‖F denotes the Frobe-

nius norm, andR1 andR2 are proper, lower semicontinous re-

gularization functions on T and V . Problem (7) takes the form

of our general problem (1). In order to apply Algorithm 1, we

need to define, for a given (T ′, V ′) ∈ domR1 × domR2,

quadratic majorants of F (·, V ′) (resp. F (T ′, ·)). Under the

assumption that matrices T ′ and V ′ have positive elements,

we can derive the following majorant functions, which are re-

miniscent of the auxiliary functions proposed in [33] in the
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context of NMF :

Q1(T | T
′, V ′) = F (T ′, V ′) + tr

(
(T − T ′)∇1F (T

′, V ′)⊤
)

+
1

2
tr
(
((T − T ′)⊙A1(T

′, V ′))(T − T ′)⊤
)
,

Q2(V | T
′, V ′) = F (T ′, V ′) + tr

(
(V − V ′)∇2F (T

′, V ′)⊤
)

+
1

2
tr
(
((V − V ′)⊙A2(T

′, V ′))(V − V ′)⊤
)
,

with

A1(T
′, V ′) = ((Ω⊤Ω)T ′(V ′V ′⊤))⊘ T ′,

A2(T
′, V ′) = ((ΩT ′)⊤ΩT ′V ′)⊘ V ′,

(8)

where tr(·) denotes the trace operator, and ⊙ (resp. ⊘) the

Hadamard product (resp. division) between matrices of the

same size. Problem (7) is then solved by applying Algorithm 1

with J = 2 and N = P (M +Q).

4.3. Numerical results

In order to simulate realistic hyperspectral data, we define

Ω as the pruned version available at http://www.lx.it.

pt/~bioucas, of the U.S. Geological Survey library [34]

composed with Q = 62 spectra of S = 224 spectral bands

from 383 nm to 2508 nm. Matrix U is composed with P = 5
distinct spectra resulting from weighted combinations of few

(typically 3) pure spectra randomly selected in the columns

of Ω, the weights being stored in matrix T . Each line of the

abundance matrix V is then simulated as the superposition

of 2D Gaussian patterns with size M = 1282 pixels, with

random location and variance, normalized to ensure the sum-

to-one constraint. Finally, the resulting mixture is corrupted

with a zero-mean white Gaussian noise, whose variance is set

in order to get a signal-to-noise ratio (SNR) of 20 dB.

In order to promote the sparsity of T , we choose :

R1(T ) =

Q∑

q=1

P∑

p=1

(
ι[Tmin,Tmax](T

(q,p)) + η ϕβ(T
(q,p))

)
,

where (η, Tmin, Tmax) ∈ (0,+∞)3, ι[Tmin,Tmax] stands for

the indicator function of interval [Tmin, Tmax] and ϕβ denotes

the regularization function defined in [35], with parameter

β ∈ (0, 1]. We recall that ϕβ is convex if and only if β = 1,

and that ϕ1 reduces to the absolute value function. Moreover,

we define R2 as the indicator function of the set V ⊂ R
P×M

given by

V =
{
V ∈ R

P×M : (∀m ∈ {1, ...,M})
∑P

p=1 V
(p,m) = 1,

(∀p ∈ {1, ..., P})(∀m ∈ {1, ...,M}) V (p,m) ≥ Vmin

}
,

with Vmin > 0.

In practice, β = 0.1 has been observed to yield the best

reconstruction performance. Fig. 1 shows the exact and re-

constructed spectra U and Û . In this example, the average

0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

wavelength (µm)

Fig. 1. Exact (continuous) and estimated endmembers (da-

shed).

0 200 400 600
1

2

3

4

5
x 10

−3

Time (s.)

r
(T

ℓ
)

Fig. 2. Comparison of BC-FBVM algorithm (dashed) and

PALM algorithm (continuous).

residual norm r(T̂ ) between T̂ and T (resp. r(V̂ ) between V̂

and V ) equals 1.1 × 10−3 (resp. 7.5 × 10−5). For compari-

son, the NMF approach from [33] applied to Model (5) leads

to r(V̂ ) = 5× 10−4 (after renormalization of the columns of

V̂ ).

Fig. 2 illustrates the variations of (r(Tℓ))ℓ with respect

to the computation time, when using either the proposed BC-

VMFB algorithm with γℓ ≡ 0.99 or PALM algorithm [20],

the latter being similar to Algorithm 1 where the preconditio-

ning matrices (8) have been replaced by

(∀ℓ ∈ N) Ajℓ(Tℓ, Vℓ) =

{
‖Ω‖2‖Vℓ‖

2
1, if jℓ = 1,

‖ΩTℓ‖
2
1, if jℓ = 2,

(9)

and 1 is a constant matrix with entries equal to one. We can

observe that the variable metric strategy leads to a significant

acceleration in terms of decay of the residual.

5. CONCLUSION

The BC-VMFB introduced in this paper allows us to

choose an iteration dependent metric based on Majorization-

Minimization properties. Its convergence proof is an offspring

of recent results in nonsmooth analysis. The application of

this algorithm to hyperspectral unmixing demonstrates its

ability to deal with sophisticated variational formulations,

while exhibiting a good convergence rate.

1515



6. REFERENCES

[1] G. H.-G. Chen and R. T. Rockafellar, “Convergence rates in forward-

backward splitting,” SIAM J. Optim., vol. 7, pp. 421–444, 1997.

[2] P. Tseng, “A modified forward-backward splitting method for maximal

monotone mappings,” SIAM J. Control Optim., vol. 38, no. 2, pp. 431–

446, 1998.

[3] H. Attouch and J. Bolte, “On the convergence of the proximal algorithm

for nonsmooth functions involving analytic features,” Math. Program.,

vol. 116, pp. 5–16, Jun. 2009.

[4] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent me-

thods for semi-algebraic and tame problems : proximal algorithms,

forward-backward splitting, and regularized Gauss-Seidel methods,”

Math. Program., vol. 137, pp. 91–129, Feb. 2011.

[5] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, “A

family of variable metric proximal methods,” Math. Program., vol. 68,

pp. 15–47, 1995.

[6] J. V. Burke and M. Qian, “A variable metric proximal point algorithm

for monotone operators,” SIAM J. Control Optim., vol. 37, pp. 353–375,

1999.

[7] L. A. Parente, P. A. Lotito, and M. V. Solodov, “A class of inexact

variable metric proximal point algorithms,” SIAM J. Optim., vol. 19,

pp. 240–260, 2008.

[8] P. A. Lotito, L. A. Parente, and M. V. Solodov, “A class of variable

metric decomposition methods for monotone variational inclusions,” J.

Convex Anal., vol. 16, pp. 857–880, 2009.
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