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ABSTRACT

A pitch detector system is proposed, based on estimation
of time envelope information and individual harmonics fre-
quency determination. The system takes advantage of the
fact that both the time envelope of a speech signal and the
frequency of its individual harmonics carry information about
the pitch. A set of pitch hypotheses are calculated from time
envelope signals extracted from different parts of the spec-
trum. These hypotheses are tested against the information
obtained from individual harmonics from the lower part of
the spectrum. Hypotheses which reliably match that infor-
mation are preserved, and a consensual decision is taken
between them to obtain the final pitch estimation. In addition,
several by-products of the process can be retained in order to
perform voiced/unvoiced detection. As every subsystem ex-
tracts information from arrangements of Phase Locked Loops
the detector is very robust in noisy conditions, compared to
the well known get_f0 algorithm.

Index Terms— Pitch estimation, consensual decisions,
PLL frequency estimation, PLL spectrum estimation, PLL
noise robustness.

1. INTRODUCTION

Pitch determination is a complex problem. Many diffi-
culties arise in pitch estimation, including pitch-doubling,
pitch-halving, performance degradation with noise, voiced-
unvoiced decision and estimation at the beginning and ending
of voiced segments. Several algorithms have been proposed
in the past [1] [2] [3] [4] [5] that perform very well over clean
speech. But nearly all fail in noisy environmental conditions,
discouraging their use in many speech processing systems.
Nevertheless pitch is important in several applications, such
as distinguishing segmental categories in tonal languages,
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speech coding systems, and speech analysis-synthesis sys-
tems among others, so the lack of a robust pitch detector is a
pending issue.

In the past we have already developed two approxima-
tions to robust pitch detection [6, 7], both of them making use
of Phase Locked Loop (PLL) devices [8]. In [6] we explored
appealing properties of PLLs, such as the ability to automati-
cally track periodic signals and extracting their instantaneous
phase, even under severe noise conditions. Based on those
key features we developed a pitch detection system that was
able to outperform current systems under noisy conditions. In
[7] we added a block which has the ability to make a consen-
sual decision between many guesses obtained from the main
system. This latest approach retained the robustness charac-
teristics of [6], but adding increasing precision.

In this work we propose to include temporal envelope in-
formation to the previous approaches. Roughly speaking, the
system produces several versions of the temporal envelope by
using increasing spectral information ranging from 500 up to
5000Hz, and from every envelope instance a guess for the
pitch value is obtained. All these guesses are tested against
a secondary pitch detector based on individual harmonics of
the lower part of the spectrum. Guesses that pass the test are
retained to make a consensual decision about the true pitch
value. This approach also produces a lot of collateral in-
formation related to the voiced/unvoiced characteristic of the
input signal, that can be combined in a Linear Discriminant
Analysis (LDA) discriminator providing voiced/unvoiced de-
tection. Since the collateral information is derived from the
main pitch detection, this voiced/unvoiced detector exhibits
the same robustness characteristics than the pitch determina-
tion. This ability is also a key improvement over previous
systems [6, 7].

2. OVERALL SYSTEM DESCRIPTION

In this section an overall system description is presented,
leaving further detailed explanation of each part to the fol-
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lowing section. The general block diagram is as shown in
Figure 1. Three main stages compose the system. The block
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Fig. 1. General system block diagram

called Pitch Detector from Temporal Envelope computes
several versions of the temporal envelope, and from each
envelope instance estimates one value for the pitch fop,,.
These estimations can be thought as initial hypotheses or
guesses about the true pitch value. In the block termed Pitch
Validation by Lower Harmonics, a test for each postulated
pitch value is performed, scoring them by using information
taken from the lower harmonics of the input signal. Only
those pitch estimations that have an score exceeding a prede-
fined threshold are retained and passed towards the following
block, while other non successful estimations are discarded.
The latest block accumulates validated pitch estimates, foy,,,
for three consecutive frames, to perform a kind of consensual
decision between them by calculating their median value.
This approach constitutes an extension of a median filter,
which is commonly used in pitch detection systems in gen-
eral, but in this case is applied to several values per frame.
It should be emphasized that this approach of generating a
lot of redundant values for the pitch and taking a consensual
decision between the most highly qualified ones, produces a
great reduction in the error rate (see [7]).

3. DETAILED DESCRIPTION

3.1. Pitch Detector from Temporal Envelope

The block that calculates pitch estimates from the temporal
envelope is composed of several parallel blocks, all of them
displaying the same structure shown in Figure 2. The main
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Fig. 2. Block diagram of pitch detection from temporal enve-
lope

goal in the envelope computation is to obtain a signal that
exhibits strong energy in the fundamental harmonic, stronger
than the fundamental harmonic energy in the input signal it-
self. This objective can be attained by making a temporal
rectification of the signal, as long as more than one harmonic
of the signal is present. It can be consider approximately that

rectification reconstructs the fundamental frequency of a sig-
nal. In order to obtain different envelope instances in each
structure, the first component in the block is a bandpass fil-
ter whose high stop frequency is different for each of these
structures in the whole block but wide enough to assure that
is capturing more than one signal harmonic.

Once the rectification is performed, the rest of the block is
devoted to obtain the frequency of this main harmonic com-
ponent of the envelope signal env(t). The method used to
find this frequency is to perform a PLLspectrum calculation,
described below, and to determine which one of the spectrum
peaks more likely match the harmonic structure in this spec-
trum, by calculating a score for each peak as:

K
score = Z PLLspectrum(k) cos(2mk/p) (1)
k=0

where p is the discrete index corresponding to a peak in the
spectrum. If this score is high, more harmonics of p are
present, that indicates that the p is a good pitch candidate.
So the output of this block is the frequency corresponding to
the peak with the highest calculated score.

The PLLspectrum for a signal is a kind of spectrum com-
putation using Phase Locked Loops [8]. The reason to use this
particular spectral calculation is that it inherits the same noise
robustness as PLLs themselves, as it was shown for example
when it was used in the recognition of voiced sounds [9]. In
this work a simpler version of that PLLspectrum is used, as
it is depicted in Fig. 3. The first stage is a bank of bandpass

Bandpass

67“"<t> | SPeCtrum PLLspectrum
T — =

Filter

Bank Composition

Fig. 3. Block diagram for PLLspectrum calculation

filters that decomposes the input signal into simpler signals,
each filter followed by one PLL. The outputs of each PLL are
the inputs to the Spectrum Composition stage. The bandpass
filter at the beginning of the block is intended to restrict the
frequency band to which PLLs should be able to synchronize.
Band boundaries are linearly distributed in mel scale. The
degree of asymmetry and () was experimentally set, using as
guide the biological descriptions of [10]. If the goal is captur-
ing individual harmonics of the signal as in this case, narrow
band filters are required. In the Spectrum Composition stage
the PLLs outputs (frequency measured and lockin, see [8] [6]
[7]) are averaged over a frame, and these averaged PLLs out-
puts are applied to generate a vector that describes energy as
function of frequency. The objective is to register a measure
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of which frequencies are mainly present in the PLL bank out-
put, representing the frequency composition in the input sig-
nal. The set of these vectors can be arranged in the form of a
pseudo-spectrum, similar to the power spectrum of the signal.
The lockin output is used as a kind of energy weight for the
PLL output frequency, because PLLs always displays a fre-
quency output, even though there is not a sinusoidal signal in
its input. The spectral composition consists on locating the
lockin value of each PLL in the abscissa indicated by its fre-
quency. If more than one PLL in the bank indicates the same
frequency, their lockin values are added. As a final step, a lin-
ear convolutions with a smoothing window is performed over
this vector, that also produces energy average for very similar
frequencies.

The PLLspectrum calculated for this block is composed
of 23 bandpass-filter/PLL pairs, with their frequency band
upper limit ranging from 80 to 600Hz. Parameters for PLLs
are experimentally set, as defined in previous works [9]. We
implemented 200 parallel structures as shown in Figure 2,
i.e. there are 200 fop,, initial hypotheses for the pitch value.
The high stopband frequency for the bandpass filter in each
block ranges from 500 to 5000Hz. All the bandpass filters are
cochlear filters, as used by Wang and Shamma in [11].

Additional useful information for voice/unvoiced detec-
tion can be obtained from this block. Three parameters are
extracted from each parallel block: the mean and variance of
the PLLspectrum for each frame, and the score of the spec-
trum peak chosen as the pitch value fy;, of the block. Those
parameters display a strong variation between voiced and un-
voiced segments, that will be combined later with other pa-
rameters extracted from the validation block.

3.2. Validation by Lower Harmonic Information

This block mainly consist of recomputing the score as ex-
pressed in Eq. 1, but in this case another PLLspectrum is
used, calculated directly from the lower spectral part of the
input signal. This evaluation produces a kind of cross spec-
tral check between different portions of the signal spectrum.
As was previously mentioned, the time envelope of the signal
is calculated from high portions of the signal spectrum. In
contrast, in this block only low harmonics of the input signal
are used. The comparison of this score against a predefined
threshold is intended for reassurance about the the reliability
of initial hypothesis calculated from the temporal envelope,
selecting better quality fo; values for the final consensual
computation. This PLLspectrum ranges from 0 to 1000Hz,
where it is possible to identify easily individual harmonics.
Forty channels are used, with bandpass cochlear filters of the
same class as before, PLLs values and other parameters es-
tablished as in [7], and the reliability threshold experimen-
tally set. Three additional parameters are retained for further
use in voiced/unvoiced detection: the new score for the pitch
candidate, and the mean and variance of the lower harmonics

PLLspectrum.

3.3. Voiced/Unvoiced detection

The voiced/unvoiced detector is a simple Linear Discriminant
Analysis (LDA) detector [12]. From every fo,, computation
(including those discarded in the Validation Block), the col-
lection of the six parameters previously described that will
hopefully characterize the quality of sonority of the frame
are extracted. Another additional parameter is added to the
set, which is the ratio between the original foy,, and the fi-
nal pitch obtained after the consensual decision between val-
idated hypothesis. This latest parameter is generally equal to
one in voiced segments, and very spread in unvoiced ones.
The LDA is trained to give an answer for each fy,,, about
their quality as voiced. Also in this case a consensual deci-
sion is taken to obtain the final voiced/unvoiced decision, by
assuming that the majority of answers for each fop,, voicing
quality is the true value for voiced/unvoiced. In order to avoid
overfitting, the LDA detector is trained with 4/5 of the signals
in the data base and tested with the remaining portion. This
process is repeated five times in order to cover all the signals
in the database. For noisy signals, the whole set of clean sig-
nals was used to train the LDA detector.

4. EXPERIMENTS AND RESULTS

4.1. Experiments and data description

Performance is evaluated using two freely available databases,
with simultaneously recorded laryngograph trace that pro-
vides a reference considered as the ground truth. The first
database is called Keele pitch extraction reference database
[13]", that consists on five male and five female speakers,
each speaking a short story of about 35 seconds. The second
database was produced by P. Bagshaw [3]?, which is com-
posed of fifty English sentences, each spoken by one male
and one female speaker for a total of approximately 7 minutes
each. Both databases are studio quality, sampled at 20 KHz.
Noise added to evaluate the system for noisy conditions is
taken from NOISEX database examples®. Results are com-
pared to those of get_fO algorithm [2], a well known pitch
extraction algorithm included as part of Wavesurfer toolkit.
Frame rate is set to 10 ms and range frequency estimation
from 50 to S00Hz in both our system and Wavesurfer. Other
parameters of get_f0 are set to their defaults.

Accuracy was evaluated in terms of gross error rate
(GER), measured as the percentage of frames in which esti-
mated frequency deviates from the reference by more than a
certain amount (20% in this case). Two kind of gross errors
are produced in a pitch determination system. On one hand,

l<ftp://ftp.cs.keele.ac.uk/pub/pitch/>
2<http://www.cstr.ed.ac.uk/research/projects/fda/>
3<http://spib.rice.edu/spib/selct noise.html>
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some voiced frames can be wrongly detected as unvoiced,
and on the other hand, where frames are correctly detected as
voiced, the pitch value can be outside the limits of non gross
error. For some systems as get_fO for example, it is not pos-
sible to disable the voiced/unvoiced detection, so these two
error sources are jointly present in the measured GER. For
our system we present two GER measures: gross errors over
voiced frame as appears in the reference (GERtot), and gross
errors produced by wrongly pitch determination plus wrongly
voiced frames taken as unvoiced (GERvoiced). In the first
GER measure, only one source of error is reported (wrong
pitch values), whereas in the second the combination of both
souces are reported, and in the case of get_f0 GER. Also the
percentage of voiced frames detected as unvoiced (V2U) and
the percentage of unvoiced frames taken as voiced (U2V) are
reported for both systems, completing the description.

4.2. Results and discussion

Tables 1 and 2 show the GER performance of our system
compared with get_f0, in clean and noisy conditions. Noise
added is white, ranging from 30 to 0dB of SNR. GER com-

SNR || GERtot | GERvoiced | GER

(dB) PLL PLL get_fO

clean 2.27 4.96 5.71
30 2.35 5.05 5.79
20 2.34 5.38 6.81
10 3.14 7.01 14.55
0 7.67 10.7 56.67

Table 1. Gross Error Rate for Bagshaw database

SNR GERtot | GERvoiced | GER
(dB) PLL PLL get_f0
clean 3.18 7.28 6.28
30 3.22 7.56 6.63
20 3.34 8.32 9.01
10 4.55 10.96 21.10
0 10.01 16.08 64.49

Table 2. Gross Error Rate for Keele database

parison has to be done over the last two columns in both
tables, in order to compare similar errors counts as was ex-
plained in the previous section. In both clean or low noise
conditions, the two detections are similar (PLL system is
slightly better for Bagshaw database, while get_fO performs
better for Keele database). But while the gross errors frames
for the PLL system in severe noise is less than 10% more of
the total frames of the low noise condition, get_fO increases
its errors by a percentage of more than 50. In Tables 3 and 4
voiced/unvoiced errors are shown for both systems. These

SNR || V2U | U2V | V2U u2v

(dB) || PLL | PLL | getf0 | getf0

clean || 3.31 | 8.35 3.81 5.23
30 334 | 8.29 3.99 3.90
20 371 | 8.02 5.17 241
10 4.80 | 7.89 | 13.53 0.78
0 4.89 | 11.84 | 56.48 0.05

Table 3. Voiced/unvoiced errors for Bagshaw database

SNR | V2U | U2V | V2U | U2V

(dB) | PLL | PLL | getf0 | getf0

clean || 497 | 8.60 | 430 | 7.38
30 || 523 | 839 | 472 | 593
20 || 593 | 812 | 748 | 3.73
10 || 820 | 7.74 | 20.15 | 1.26
0 | 10.12] 9.00 | 6444 | 0.17

Table 4. Voiced/unvoiced errors for Keele database

two tables display the same kind of behavior as the previ-
ous case. While both PLL system and get_fO present similar
performance for clean and low noise (again, PLL system per-
forms better for Bagshaw data base and get_fO for Keele), the
behavior for high noise is completely different. In the case
of the PLL detector under severe noise conditions, the in-
crease in the percentage of frames wrongly detected unvoiced
(V2U) from clean conditions is only 1.5% for the Bagshaw
database, and around 5% for Keele, while the performance
of wrongly detected voiced frames (U2V) is maintained at
around 3% of increase. But in the case of get_f0, the error
count ocurring into the voiced part of input signal (V2U) is
very high, misdetecting more than 50% of the frames voiced
as unvoiced. PLL system is taking advantage of two factors:
the good performance of the voiced/unvoiced detector, and
the small percentage of total voiced frames with a gross pitch
error (first column of Tables 1 and 2), resulting in a significant
improvement over get_fO algorithm.

5. CONCLUDING REMARKS

The performance of the PLL pitch detector presented in this
work is similar to that of a good conventional algorithm as
get_f0 for clean signals, while largely outperforms its behav-
ior for noisy conditions, especially for severe noise environ-
ment. The key points in this behavior are the intensive use
of PLLs and the redundancy of the system. This redundancy
is not only due to the fact that multiple values are calculated
each time, but also to the fact that the values are composing
information provided by different parts of the spectra. While
the proposed system is both more time and memory consum-
ing than get_f0, higher performance largely justify this extra
complexity.
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