
A COMPUTATIONALLY EFFICIENT REFINEMENT OF THE FUNDAMENTAL
FREQUENCY ESTIMATE FOR THE ADAPTIVE HARMONIC MODEL

Veronica Morfi, Gilles Degottex, Athanasios Mouchtaris

Multimedia Informatics Lab, Computer Science Department, University of Crete
Institute of Computer Science, Foundation for Research and Technology Hellas

Heraklion, Greece
morfi@csd.uoc.gr, degottex@csd.uoc.gr, mouchtar@ics.forth.gr

ABSTRACT

The full-band Adaptive Harmonic Model (aHM) can be used
by the Adaptive Iterative Refinement (AIR) algorithm to
accurately model the perceived characteristics of a speech
recording. However, the Least Squares (LS) solution used
in the current aHM-AIR makes the f0 refinement in AIR
time consuming, limiting the use of this algorithm for large
databases. In this paper, a Peak Picking (PP) approach is
suggested as a substitution to the LS solution. In order to
integrate the adaptivity scheme of aHM in the PP approach,
an adaptive Discrete Fourier Transform (aDFT) is also sug-
gested in this paper, whose frequency basis can fully follow
the frequency variations of the f0 curve. Evaluations have
shown an average time reduction of 5.5 times compared to the
LS solution approach, while the quality of the re-synthesis is
preserved compared to the original aHM-AIR.

Index Terms— Fundamental frequency, speech analy-
sis/synthesis, peak picking, Harmonic Models

1. INTRODUCTION

Harmonic Models (HM) are used for speech coding [1], con-
catenative speech synthesis [2], speech modeling [3], voice
transformation [4]. After the analysis step, these models
provide a set of sinusoidal parameters, such as frequencies,
amplitudes and phases, which can later be used to build
higher-level representations (e.g. spectral envelopes). For
synthesis purpose, the perceived quality is crucial. Addi-
tionally, current speech synthesis technologies often need to
process large recording databases. Computationally efficient
algorithms are, thus, preferred.

In most analysis approaches, the fundamental frequency
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f0 is assumed to be constant, in an analysis window, whereas
f0 actually varies throughout the speech signal. This mis-
match between the frequency basis of the model (e.g. DFT
or HM) having constant frequencies and the modulated har-
monic structure of the speech signal causes the harmonic
structure in a spectrogram to be blurred, and can make the
harmonic structure difficult to track.

To alleviate this issue, the Adaptive Quasi-Harmonic
Model (aQHM) has been suggested [5] in which the fre-
quency basis is adapted to the f0 curve estimated from the
speech signal. Thus, the adapted frequency basis can fol-
low any non-linear variations of the frequency basis of the
underlying signal. However, a proper estimation can be ob-
tained only if the input components of the frequency basis
built from the f0 curve are in a reasonable interval around the
actual values of the speech signal [5]. Any error on the f0
curve being multiplied by the harmonic number, the tracking
of the harmonic structure in mid and high frequencies can be
easily compromised.

In [6], the Adaptive Iterative Refinement (AIR) was pro-
posed to address this problem by refining the f0 curve, lead-
ing to accurate parameter estimates of the aHM model, a
simpler version of aQHM. The AIR algorithm begins with
the lowest frequencies, where the f0 error is assumed to be
small, and iteratively increases the number of harmonics up
to the Nyquist frequency by successive refinement of the f0
curve at each iteration step. In order to compute the sinu-
soidal parameters of the harmonic model, the Least Squares
(LS) solution was used. However, even though aHM-AIR al-
lows a robust estimation of the harmonic components through
the refinement of the f0 curve, the computational load of the
LS solution does not allow processing of large databases in a
convenient time duration.

This paper addresses this problem of computational effi-
ciency by replacing the LS solution of the aHM-AIR method
with a Peak Picking (PP) approach [7]. In order to integrate
the adaptivity scheme of aHM to the PP approach, the Adap-
tive Discrete Fourier Transform (aDFT) is also suggested in
this paper. In contrast to the standard DFT, the frequency
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basis of the aDFT is fully adapted to the input f0 curve of
the signal. Therefore, while keeping the basis structure of the
aHM-AIR, this paper describes how to replace the LS solu-
tion by the PP approach based on the aDFT. In the evaluation,
the Fan Chirp Transform (FChT), which uses a linear chirp
related frequency basis adapted to f0, will also be compared
to the aDFT.

In the rest of this paper the aDFT is first presented (Sec.
2), followed by the method section (Sec. 3), where the modi-
fications of the AIR algorithm are explained. In the evaluation
section (Sec. 4), the LS solution will be compared to the sug-
gested PP approach, using aDFT or FChT, in terms of SRER.
Assessment of the perceived quality of the reconstructed
signal will also be carried out using PESQ [8].

2. ADAPTIVE DISCRETE FOURIER TRANSFORM
(ADFT)

The theoretical novelty of the suggested approach lies in the
Adaptive Discrete Fourier Transform (aDFT). In order to em-
phasize the importance of adaptivity for the AIR algorithm
and describe the aDFT, the difference between DFT and FChT
is first described in this section.

The DFT of a windowed signal x(n) is defined as

X(k) =

N−1∑
n=0

x(n)e−j2πkn/N (1)

where N refers to the length of the windowed signal x(n)
and the DFT length, k = 0, .., N − 1. In the Discrete Fourier
Transform (DFT), the frequency basis is constant inside the
analysis window which implies the assumption of stationarity
of the analyzed signal. For speech signals this assumption is
valid only when the variations of the fundamental frequency,
f0, are negligible compared to the stationary basis of the DFT.
However, the variations of the harmonics are proportional to
those of f0 and the harmonic number. The non-stationarity
of the voiced signal is therefore highly increased as frequen-
cies increase, making the validity of the stationarity hypothe-
sis questionable for mid and high frequencies of speech sig-
nals. To alleviate this issue, the Fan Chirp Transform (FChT)
has been suggested [9]. This method uses a chirp related fre-
quency basis (i.e. linear frequency trajectories) whose slope
is adjusted to the average slope of the f0 curve in the analysis
window. The FChT of a signal x(n) is defined as

X(k, a) =

N−1∑
n=0

x(n)ξ∗(n, k, a) (2)

where N stands for the length of the windowed signal x(n)
and the FChT length, k = 0, .., N − 1, * denotes the complex
conjugate and ξ(n, k, a) is the basis of the FChT:

ξ(n, k, a) =
√
|φ′a(n)|e−j2πkφa(n), (3)

where φa(n) rules the time dependence of the frequency basis
exponent

φa(n) =
(
1 +

1

2
a
(
n− N

2

))(
n+

N

2

)
− N

2
(4)

whose first frequency basis component is

φ′a(n) = (1 + an) (5)

where the parameter a is the chirp rate, the f0 slope. Using the
FChT, a regularity in the frequency content can be observed
in mid and high frequencies [9]. Even though the FChT basis
better fits the frequency modulations of the speech signal than
the DFT, the frequency basis is constrained to linear trajecto-
ries.

In order to better follow the non-linear f0 variations the
Adaptive Discrete Fourier Transform (aDFT), which is based
on the adaptivity scheme of aQHM [5], is suggested in this
paper. The aDFT, is similar to DFT but uses a frequency basis
that follows the variations of the f0 curve. In this paper, we
define the aDFT of a signal x(n) as

X(k) =

N−1∑
n=0

x(n)e−jkφ0(n) (6)

where k = 0, .., N − 1, N is the aDFT length and φ0(n) is
the fundamental phase of the frequency basis, which is a real
function defined by the integral of the fundamental frequency
f0(t).

φ0(t) =
2π

fs

∫ t

0

f0(τ) dτ (7)

According to the adaptivity scheme, f0(t) is obtained by lin-
ear interpolation of f ti0 values at analysis instants ti, where
the time zero corresponds to the window center. More details
can be found in the following sections.

3. PROPOSED METHOD

In this section the suggested method to estimate the parame-
ters of aHM will be described, namely the Adaptive Iterative
Refinement (AIR) [6] method which uses the Peak Picking
(PP) approach [7] on the Adaptive Discrete Fourier Trans-
form (aDFT). In order to use the PP approach for extracting
harmonic peaks, a method based on [10] was used. The main
structure of the original AIR algorithm has been described in
detail in [6]. The modifications brought by the new algorithm
are explained below.

A parametrization of the speech signal at time instants ti
takes place during analysis. A sequence of anchor instants ti
is first created using a rough estimate of the f0 curve, with
distance of one period between each instant ti. A Blackman
window of 3 local pitch periods is then applied to the speech
signal around each ti. The aDFT length (N ) is defined as
twice the window’s length. This means that voices with high
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f0 (e.g. female voices) will need a shorter aDFT length than
voices with lower pitch (e.g. male voices).

The basic idea of the AIR algorithm is to begin with a low
harmonic level (Ki = 8) for each instant i. For each itera-
tion step, the corrected f ′ti0 is estimated from the PP-aDFT at
each time instant ti. After each iteration, the f0(t) curve is
replaced by the new f ′0(t) curve. In our implementation each
corrected f ′ti0 is estimated using the median of the harmonic
peaks divided by their harmonic number (i.e. f tik /k). Be-
fore the next iteration begins, Ki is updated, as in the original
AIR algorithm [6]. Eventually, this process is repeated for all
frames until the Nyquist frequency is reached for all of them.
Algorithm 1 describes this specific analysis procedure.

Algorithm 1 AIR for aHM using Peak Picking

Create a sequence of times ti according to f0(t)
Initiate each for f ti0 = f0(ti)
Initiate each Ki = 8
while ∃ i such as f ti0 Ki < fs/2

for each instant tc
Create a segment of 3 periods around tc using f0(tc)
Compute the aDFT of the segment
Pick the harmonic peaks fk up to Kc in the aDFT
Correct f ′tc0 = median(fk/k)
Compute fcorr = f ′tc0 - f tc0
if f tc0 Kc < fs

Update Kc = b0.5Nw/|fcorr|c
end if

end for
Set f ti0 = f ′ti0

end while

Considering that the reason for replacing the LS solution
with aDFT and PP was to improve the speed of the aHM-AIR
method, a few more techniques are suggested in this direction.
These techniques are explained in the following subsections.

3.1. Reduction of Computational Load

The number of harmonics (Ki) at the first iteration starts from
a low value (Ki = 8). Since only the first 8 harmonics will be
used in the PP, there is only a need to compute the aDFT bins
containing these harmonics. Thus, aDFT only computes up
to the current harmonic level Ki instead of the whole aDFT
length (N ), hence, avoiding computation of bins above the
current harmonic level.

The second improvement regarding the method’s com-
plexity was based on the observation that the f0 values com-
puted in each iteration eventually converged for each window.
Thus, the frequency basis is almost the same for the low fre-
quencies as the harmonic levels, Ki, used in its computation
increase. The aDFT in low frequencies is, thus, very simi-
lar between iterations and the correction of the frequency ba-
sis becomes more and more negligible for low frequencies.

Hence, it can be assumed that below a certain extent of f0
correction, the peaks estimated during the previous iteration
would remain almost the same, and they can be kept the same
for the following iterations. In order to implement this in the
proposed method, a threshold, Bi in the frequency bins of the
aDFT, below which the peaks are kept the same, needs to be
set:

Bi =
tol · f ti0 ·Ni
f ticorr · fs

(8)

where f ti0 is the frequency of the time instant ti, Ni is the
aDFT length for the current frame, f ticorr is the correction of
f ti0 computed in the previous iteration and fs is the signal’s
sampling frequency. A tolerance factor of 10% of the f0 (i.e.
tol = 0.1 · f ti0 ) was chosen, which provided an important re-
duction of the computational time without altering drastically
the results.

3.2. Unvoiced Segments

In unvoiced segments, no harmonic structure exists, hence us-
ing a harmonic model in those parts is questionable. How-
ever, it has been shown that it is possible to use aHM for
both voiced and unvoiced segments thus providing a uniform
representation across time which does not need any voicing
decision [6]. Using the suggested PP approach in unvoiced
segments, substantial deviations from the input f0 curve were
often observed in the newly computed f0 curve. This is obvi-
ously caused by the lack of harmonic structure in addition
to the low harmonic level used during the first steps (e.g.
Ki = 8), which prevent convergence of the f0 values. In this
paper, we suggest to discard any substantial f0 deviations and
force the harmonic level to increase, before the next iteration
step. In the current implementation, a deviation threshold of
8% from f0 is used to decide whether or not each f ′0 will be
discarded. In such a case, we suggest to force the harmonic
level by the following way K ′i = |f ′0 − f0| ·Ki.

4. EVALUATION
For the following evaluations, three versions of aHM-AIR
were compared, each one using a different method to com-
pute the sinusoidal parameters of the harmonic model. These
three methods, as previously mentioned, are: the LS solution;
PP using FChT (PP-FChT); and PP using aDFT (PP-aDFT).
These tests were applied on a small database of 32 utterances
(16 female and 16 male in 16 different languages, between
2s and 4s length, with sampling frequency varying between
16kHz and 44kHz). We assume that the different phonemes
and origins of these languages provide a sufficient voice vari-
ability for supporting the validity of the results. The sam-
ples can be found on the following web-page with their cor-
responding re-synthesis using the three methods:
http://www.csd.uoc.gr/∼morfi/

For FChT, the chirp-factor a for each time instant ti, was
estimated based on linear interpolation of the four neighbour-
ing f0 values, around ti.
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4.1. Computational Time

For each method, the running time has been measured for
each recording and the time reduction ratios, with respect to
the LS-based method, were averaged (Table 1). On average,
by using PP-FChT, aHM-AIR becomes 5 times faster, while,
with PP-aDFT, it becomes 5.5 times faster, as shown in Ta-
ble 1. Amongst the used sentences, the maximum ratio of
time improvement observed was 11.8 for the PP-aDFT over
the LS solution.

Methods Male Voices Female Voices All

LS/PP-FChT 4.5 5.6 5.0
LS/PP-aDFT 4.8 6.2 5.5

Table 1. Average Time Reduction Ratios

4.2. Signal-to-Reconstruction Error Ratio (SRER)

To evaluate the global reconstruction accuracy of the sug-
gested methods, the segmental Signal-to-Reconstruction-
Error Ratio (SRER) between the recorded utterances and
their models was computed. A sliding window of 10ms with
50% overlap was used. In order to evaluate only the impact
of the AIR algorithm, which basically refines the fundamen-
tal frequency, the LS solution was kept to estimate the final
sinusoidal parameters used for synthesis, as previously used
in [6]. The SRER was computed using the full-band of the
recordings and its distribution of the voiced and unvoiced
segments is shown on the top and bottom plot of Fig.1, re-
spectively. The sole 32 sentences were sufficient to obtain
more than 10000 values for each distribution.

It can be observed that the distributions of all three meth-
ods are very similar. Especially, the comparison between
the LS solution and the aDFT methods shows that these two
methods have very close results. A smaller SRER for the
FChT method is noted in the voiced segments. This is caused
by the fact that the frequency basis in FChT is constrained to
linear trajectories and cannot fully adapt to the input f0 curve,
in contrast to the LS and the aDFT based solutions.

4.3. Objective Quality Assessment

It is expected that, since the results of SRER for all three
methods are very similar, the re-synthesized signals would
sound quite the same. In order to verify this, the PESQ
method [8] is used to assess the perceived quality of the
reconstructed signals compared to the originals. Table 2
presents the PESQ scores for the three methods using the
same database as in the previous tests. Due to the fact that
the sampling frequency for the signals in the database varied
from 16kHz to 44kHz, a re-sampling of all signals to 16kHz
was performed in order for the PESQ measurement to be
used. The results show that there is no clear difference in
quality, which can be confirmed by informal listening:
http://www.csd.uoc.gr/∼morfi/
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Fig. 1. Estimation of the full-band SRER distributions for
voiced and unvoiced frames.

PESQ Ratings (up to 4.5)

LS solution 4.13

PP - aDFT 4.12

PP - FChT 4.04

Table 2. PESQ scores assessing the overall quality of the
three re-synthesized signals of the methods and the originals.

5. CONCLUSIONS

Taking advantage of the good perceived quality provided
by aHM-AIR, a Peak Picking approach was suggested to
replace the LS solution for the f0 refinement, in order to
reduce the computational time of the AIR algorithm. Two
different transforms were used for Peak Picking, the existing
FChT and a new aDFT, whose frequency basis fully adapts
to the input f0 curve and which is presented in this paper.
Evaluations have shown that by performing this substitution,
the computational load of the AIR algorithm decreases, in
average, by a factor of 5.5. Moreover, according to objective
assessment, this replacement did not degrade the perceived
quality of the re-synthesized signal. Therefore, the speed and
quality of the aHM-AIR method using Peak Picking make it
ideal for processing large databases during a convenient time
duration.
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