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ABSTRACT

Grating Compression Transform (GCT) is a two-dimensional analy-

sis of speech signal which has been shown to be effective in multi-

pitch tracking in speech mixtures. Multi-pitch tracking methods us-

ing GCT apply Kalman filter framework to obtain pitch tracks which

requires training of the filter parameters using true pitch tracks. We

propose an unsupervised method for obtaining multiple pitch tracks.

In the proposed method, multiple pitch tracks are modeled using

time-varying means of a Gaussian mixture model (GMM), referred

to as TVGMM. The TVGMM parameters are estimated using mul-

tiple pitch values at each frame in a given utterance obtained from

different patches of the spectrogram using GCT. We evaluate the

performance of the proposed method on all voiced speech mixtures

as well as random speech mixtures having well separated and close

pitch tracks. TVGMM achieves multi-pitch tracking with 51% and

53% multi-pitch estimates having error ≤ 20% for random mixtures

and all-voiced mixtures respectively. TVGMM also results in lower

root mean squared error in pitch track estimation compared to that by

Kalman filtering.

Index Terms— Grating Compression Transform, multi-pitch

tracking, Gaussian mixture model, expectation- maximization

1. INTRODUCTION

Multi-pitch tracking in speech mixtures is a challenging problem

which has seen considerable research over the years [1, 2, 3]. Pop-

ular multi-pitch tracking algorithms estimate pitches by analyzing

each short-time frame of speech mixture signal. This is followed by

statistical or probabilistic model to estimate individual pitch contours

or pitch tracks. Wu, et. al, [4] used pitch period statistics and channel

selection mechanism followed by hidden Markov model (HMM)

based pitch contour generation. Jin and Wang [5] used correlogram

and cross-channel correlation features followed by an HMM based

pitch track generation. Recently, probabilistic models using factorial

HMM (FHMM) [6] were used in obtaining multi-pitch tracks.

A class of approaches in multi-pitch tracking involves a two-

dimensional analysis of speech signal proposed by Quatieri [7] and

Ezzat, et. al, [8]. The 2-D analysis was supported by findings from

the auditory neurophysiology [9] and is aimed at better understanding

about the way phenomena including harmonicity, formants, onsets

are observed in the spectrogram. The analysis was termed Grat-

ing Compression Transform (GCT) [7]. Quatieri and Wang [10]

demonstrated the ability to extract multi-pitch estimates from GCT

representation of small regions or patches of the spectrogram. In their

work, pitch candidates were firstly obtained from the centroids of the

pitch clusters from GCT of patches of the spectrograms. These pitch

candidates were fed into a trained Kalman filter followed by assign-

ment of estimated pitches to individual speaker’s pitch contour and

smoothing of pitch tracks. In contrast, we propose to model the pitch

estimates, obtained from the GCT of patches of the spectrogram, as

if they are generated from a Gaussian mixture model (GMM) with

time-varying mean parameter, referred to as TVGMM. The means of

the individual Gaussian components over time frames represent mul-

tiple pitch tracks. We develop a modified Expectation-Maximization

(EM) algorithm to estimate time-varying parameters of the GMM.

The proposed algorithm automatically handles assignment of pitch

estimates in each frame to appropriate pitch tracks as well as en-

sures smooth pitch tracks. We evaluate the proposed multi-pitch

tracking algorithm on all voiced and random speech mixtures with

pitch tracks that are close as well as separated. TVGMM achieves

multi-pitch tracking with 51% and 53% multi-pitch estimates having

error ≤ 20% for random mixtures and all-voiced mixtures respec-

tively. In the case of average root mean squared error, TVGMM

achieves an improvement by 13% and 6.4% over Kalman for all-

voiced and random speech mixtures respectively.

The paper is organized as follows. Section 2 summarizes the

GCT. The formulation of the proposed TVGMM is described in

Section 3. Section 3.1 provides derivation of EM algorithm for es-

timating time-varying parameters of the TVGMM by jointly using

GCT based multiple pitch estimates across all frames of an utterance.

Section 4 describes the setup for multi-pitch tracking experiments

and gives a quantitative evaluation of TVGMM.

2. GRATING COMPRESSION TRANSFORM

GCT is a framework for 2-D processing of speech in which 2-D anal-

ysis is performed on a time-frequency distribution of speech, viz.

the narrowband spectrogram. GCT provides us an approach which

helps in developing a modulation model for speech production, con-

sidering modulations along time as well as frequency [11]. The lo-

cal 2-D Fourier transform of the narrowband spectrogram maps the

harmonically-related signal components in the spectrogram into im-

pulses in 2D Fourier plane - referred to as GCT plane [7]. Position

of the impulses, its distance from the origin and orientation, helps us

obtain the pitch (fundamental frequency) and pitch dynamics (rate of

change of pitch) of the speaker respectively.

The harmonic line structure of the spectrogram over a small re-

gion or patch in a voiced segment can be modeled by a 2-D sinusoidal

function sitting on a DC pedestal [11] .

s[n,m] = K + α cos(Φ[n,m]) (1)

where, Φ[n,m] = ωk (n cosΩ +m sinΩ) + ψ : ωk,Ω, ψ, α corre-

spond to the frequency, orientation, phase, and amplitude of the 2-D

sinusoid, respectively. The 2-D Fourier transform of the sequence in
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Fig. 1. Pitch estimates obtained from patches (stars) and true multi-

pitch track(bold dashed lines) of a small extract from an all-voiced

mixture of two speakers’ speech.

eq. (1) is given by

S(ω1, ω2) = 2πδ(ω1, ω2) + απδ(ω1 + ωk sinΩ, ω2 − ωk cosΩ)

+ απδ(ω1 − ωk sinΩ, ω2 + ωk cosΩ) (2)

The 2-D Fourier transform given by eq. (2) consists of an im-

pulse at the origin corresponding to the flat pedestal and impulses at

±(−ωk sinΩ, ωk cosΩ) corresponding to the sinusoid. The distance

of the impulses from the origin along the ω2 frequency axis repre-

sents the pitch, i.e., f0, of the speaker for a. The pitch f0 is given by

[11]:

f0 =
2πfs

NSTFT ωk cosΩ
(3)

where, fs is sampling frequency of the speech signal, NSTFT is FFT

length of the individual spectrogram or short-time Fourier transform

(STFT) frames. In a speech signal with overlapped speech from two

speakers, GCT could be applied on the overlapping voiced regions

of both speakers. In this case, GCT of a patch of the spectrogram

would show two distinct peaks or impulses. Thus estimates of multi-

ple pitches- two in the mentioned case- can be obtained using eq. (3).

3. MULTI-PITCH TRACKING USING GCT AND TVGMM

As an illustration of the multi-pitch tracking, we consider an all-

voiced mixture of two sentences from TIMIT corpus [12] “Where

were you while we were away” and “He will allow a rare lie” spo-

ken by a female and a male speaker respectively. The spectrogram of

the mixture is obtained by performing 512 point FFT of an analysis

window of 25ms duration with 90% overlap. The GCT is performed

on the spectrogram patches of size 600Hz × 100ms at every 150Hz

along the frequency axis and every 25ms along the time axis. Fig. 1

shows pitch estimates obtained for a small extract of this mixture.

Note that the pitch estimates obtained from the GCT of patches

of the spectrogram occur in clusters corresponding to two speakers’

pitch tracks. Quatieri and Wang [10] used the centroids of the clus-

ters as pitch candidates of two speakers. In this paper we assume

that the pitch estimates obtained from the spectrogram patches are

generated from a GMM with time-varying means of individual Gaus-

sian components corresponding to the individual pitch tracks at each

frame. However, the challenge lies in associating pitch candidates

from successive frames to obtain a pitch track. In [10], a pair of

trained Kalman filters is used to obtain pitch tracks using observa-

tions as the cluster centroids in each frame. We assume that the means

of the components of GMM to be time varying whose parameters are

estimated jointly using pitch candidates over all time frames of an

utterance. This automatically takes care of the association of pitch

estimates across frames to each of the multiple pitch tracks. More-

over, we parameterize the time-varying means of TVGMM by aK-th

degree polynomial, to ensure a smooth pitch track.

3.1. Estimation of TVGMM parameters

Consider the general case of a speech mixture consisting of J speak-

ers where we have to estimate J pitch tracks. We assume that the can-

didate pitch estimates in the n-th frame are generated by a 1-D GMM

with J components, with mean of each component corresponding to

the true pitch of one of the J speakers. Hence, the distribution of

pitch estimates in n-th frame is :

fxn(xn,i|θ) =
J
∑

j=1

λj(n)φ (xn,i|θj(n)) (4)

where, θj(n) = {µj(n), σ
2
j (n)} are the mean and variance of

the jth Gaussian component in frame n respectively, with xn =
{xn,1, xn,2, ...xn,L(n)} where xn,i is ith pitch estimate in n-th

frame, L(n) is the number of candidate pitch estimate samples in

n-th frame and

φ(xn,i|θj(n)) =
1

σj(n)
√
2π

exp

(

− (xn,i − µj(n))
2

2σ2
j (n)

)

(5)

We model µj(n) by a K-th degree polynomial, to enforce smooth-

ness of pitch tracks:

µj(n) =

K
∑

k=0

ak,jn
k

(6)

For simplicity, we assume the variance and weight of individ-

ual Gaussian mixture components to be constant over time, i.e.,

σ2
j (n) = σ2

j and λj(n) = λj . The parameters of TVGMM are

estimated by the classical EM algorithm [13]. We estimate coeffi-

cients ak,j , k = 0, 1, 2, · · · ,K and j = 1, 2, · · · , J in eq. (6) and

thereby the time-varying means which are finally declared as the

estimates of the pitch tracks, i.e., f̂0(n, j) = µ̂j(n)where f̂0(n, j) is

the estimated pitch of the j-th track at the n-th frame.

In EM algorithm, a random variable Zij(n) is introduced which

indicates the component j which produces the sample xn,i. The al-

gorithm estimates parameters in two steps, viz. expectation (E - step)

and maximization (M - step), performed iteratively till convergence

E− Step : Q(θj(n)|θkj (n)) = EZn|x,θk
j
(n) ln (f (X,Zn|θj(n)))

(7)

M− step : θ
(k+1)
j (n) = arg max

θj(n)
Q(θj(n)|θkj (n)) (8)

where k is the iteration number, ln (f (X,Zn|θj(n))) is the data log

likelihood with Zn = Zij(n) i = 1, 2 · · · , L(n) j = 1, 2 · · · , J
and X = [x1,x2, · · · ,xN ] andN is number of frames under consid-

eration. Since we are estimating parameters across multiple frames,

the log likelihood is

ln (f (X,Zn|θj(n))) =
N
∑

n=1

L(n)
∑

i=1

J
∑

j=1

Zij(n) ln (λjφ (xn,i|θj(n)))

(9)
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Thus the E-Step of (7) reduces to,

Q(θj(n)|θkj (n)) =
N
∑

n=1

L(n)
∑

i=1

J
∑

j=1

EZn|x,θk
j
(n)

[

Zij(n)|x, θkj (n)
]

× ln (λjφ (xn,i|θj(n))) (10)

Now

γ
k
ij(n) = EZ|x,θk

j
(n)

[

Zij(n)|x, θkj (n)
]

=
λk
jφ
(

xn,i|θkj (n)
)

∑J

j=1 λ
k
jφ
(

xn,i|θkj (n)
)

(11)

Since we have assumed fixed variance σ2
j and component weights

λj , the parameters to be maximized over in M-step of eq. (8) are the

coefficients of the polynomial in eq. (6) denoted by,

aj = {ak,j}Kk=0 with j = 1, 2 · · · , J

Using eq. (5) eq. (10) and eq. (11), M-step of eq. (8) reduces to,

a
k+1
j = argmax

aj

Q(aj |ak
j ) (12)

where, Q(aj |ak
j ) =

N
∑

n=1

L(n)
∑

i=1

J
∑

j=1

γ
k
ij(n)

[

lnλj − ln
(

σj

√
2π
)

−

(

xi,n −∑K

k=0 ak,jn
k
)2

2σ2
j

]

,

where σ2
j and λj are known constants. We proceed with the gradient

descent algorithm to find the argument that maximizes eq. (12) and

hence,

a
(k+1)
l,j = a

(k)
l,j + η

∂Q(aj |ak
j )

∂al,j
l = 0, 1, 2 · · · ,K j = 1, 2 · · · , J

(13)

After simplification, the above equation yields

a
(k+1)
l,j = a

(k)
l,j +η

N
∑

n=1

L(n)
∑

i=1

γk
ij(n)n

l

2σ2
j

(

xi,n −
K
∑

k=0

ak,jn
k

)2

(14)

with l = 0, 1, 2 · · · ,K and η is the step-size in gradient descent.

4. EXPERIMENT AND EVALUATION

4.1. Dataset

We evaluate the performance of multi-pitch tracking using TVGMM

on all-voiced speech mixtures and random speech mixtures. Random

mixtures implies that individual speech signals in the mixture are not

entirely voiced. The mixtures were generated using sentences from

the GRID corpus [14] which contains 1000 different sentences spo-

ken by each of 34 talkers (18 male, 16 female). A total of 150 random

mixtures were generated. Among these 150 mixtures, 125 mixtures

have ‘separated’ pitch tracks since they were mixtures of one male

and one female subjects’ speech signals. The remaining 25 mixtures

have ‘close’ pitch tracks. These are generated by mixing utterances

from two female speakers. The all-voiced mixtures were generated

from a locally recorded data set containing 4 males and 4 females

speaking the voiced utterances given in Table 1. 390 mixtures were

generated from above data set. Among these 218 mixtures had ‘sepa-

rated’ pitch tracks and 172 had ‘close’ pitch tracks. The ground truth

pitch tracks of a speech mixture are obtained by computing pitch tra-

jectories of the individual speech signals using Praat [15].

s1 - “We owe you a yo-yo”

s2 - “Nanny may know my meaning

s3 - “Where were you while we were away”

s4 - “a e i o u”

Table 1. All voiced utterances used in evaluation

Method of

estimation

Total

# frames

FPE count

(5%≤ error ≤20%)

GPE

count (≥20%)

Kalman 8010 30.5% 52.7%

TVGMM 8010 32.4% 48.8%

Table 2. Performance on 150 random mixtures (male and female

voices in a mixture signal) generated from GRID corpus

4.2. Experiment Setup

To compute multi-pitch tracks from a speech mixture, it is required

to find regions in the mixture where both speakers have voiced por-

tions. It has been shown that the average duration of vowels, the

predominant class of voiced utterances, is around 250ms for British

English [16]. Hence we consider the value of N to be 10 which cor-

responds to 250ms duration of speech as frame period is 25ms. Thus

all overlapping voiced segments with length at least 10 frames are

used for our experiments. The candidate pitch values in each frame

are computed using GCT of patches of the spectrogram as described

in Section 3. These candidates are used in estimation of mean of the

J = 2 components, because there are two speakers in each speech

mixture. K = 4 degree polynomial is used to model time-varying

mean of the proposed TVGMM. K-Means clustering is used to clus-

ter the candidate pitch values in each frame into J=2 clusters and the

cluster centroids are computed. Following assignment of centroids

across frames, a 4 degree polynomial is fitted to each centroid trajec-

tory. The assignment is carried out using minimum absolute differ-

ence between centroids of successive frames. The coefficients of this

polynomial are used to initialize aj in the gradient descent algorithm

given by eq. (14). The gradient descent method is carried out for 200

iterations with step size η = 0.1. Variance σ2
j is empirically fixed

at 50. Equal weights were assigned to two components in TVGMM

because in each frame GCT gives equal number of pitch estimates for

both speakers.

4.3. Results and Analysis

The performance of TVGMM is compared with that using Kalman

filter framework [11] referred to as “Kalman”. To train the Kalman

filter, 20% of all-voiced speech mixtures were used [11]. Two types

of measures are used to evaluate the performance of multi-pitch track-

ing. The first type of measure further consists of two measures which

computes the percentage errors of the individual multi-pitch estimates

at each frame with respect to the true-pitch of individual speakers.

These are termed as Fine pitch error (FPE) where, 5% ≤ error ≤
20%, and Gross pitch error (GPE), where, error ≥ 20%. The sec-

ond type of measure is the root mean-squared error (RMSE) which is

used to represent the error in estimating an entire pitch track. RMSE

Method of

estimation

Total

# frames

FPE count

(5%≤ error ≤20%)

GPE

count (≥20%)

Kalman 19340 32.8% 50.9%

TVGMM 19340 35.1% 46.7%

Table 3. Performance on all voiced mixtures - generated from the

dataset using 4 male and 4 female speakers.
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Type of Mixture TVGMM Kalman

All-voiced 75.8 (±32.7) 89.2 (±42.7)

Random 92.2 (±47.5) 98.5 (±47)

Table 4. Average RMSE in Hz obtained over all-voiced and random

mixtures using TVGMM and Kalman methods of multi-pitch estima-

tion. Standard deviation is written in brackets.
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(a) TVGMM (RMSE in Hz =  41.00)
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Fig. 2. Illustration of multi-pitch tracking on an all-voiced mixture

–Ground truth(GT) pitch tracks and estimated pitch tracks, using (a)

TVGMM method and (b) Kalman method.

(in Hz) is defined as [11]:

RMSE =

√

√

√

√

1

2N

2
∑

j=1

N
∑

n=1

(

f̂0(n, j)− f0(n, j)
)2

(15)

where N is number of frames over which pitch tracks are estimated.

f̂0(n, j) and f0(n, j) are estimated and true pitch respectively of jth
speaker at n-th frame. Note that FPE and GPE are local frame based

measures while RMSE is a global utterance level measures.

Tables 2 and 3 give comparison of the TVGMM and the Kalman

using FPE and GPE for random mixtures and all-voiced mixtures

respectively. Table 4 provides comparison of the methods based on

average RMSE over all-voiced and random speech mixtures. Fig. 2

shows the estimated pitch tracks using TVGMM and Kalman meth-

ods along with true pitch tracks for an all-voiced speech mixture.

Fig. 3 illustrates the same for a random speech mixture.

While using TVGMM, a 4% reduction in GPE over Kalman

are observed for all-voiced speech mixtures and random mixtures.

TVGMM method gives 51% of pitch estimates with error ≤ 20%
for random mixtures. For all-voiced mixtures 53% of pitch esti-

mates have error ≤ 20%. Kalman method is found to give a lower

percentage of pitch estimates with error ≤ 20% for both all-voiced

and random speech mixtures. Considering average RMSE, TVGMM

achieves an improvement by 15% and 6.4% over Kalman for all-

voiced and random speech mixtures respectively. We also applied

state-of-the-art multi-pitch tracking algorithm proposed by Jin and

Wang [5] on all-voiced speech mixtures and obtained 47% multi-

pitch estimates with error ≤ 20% with an average RMSE of 138.2

Hz, which is higher compared to that by TVGMM. However, it

should be noted that unlike TVGMM, the approach in [5] does not

assume the locations of the voiced segments to be known.
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(b) TVGMM (RMSE in Hz =  40.14)
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Fig. 3. (a) Speech waveforms of two speakers in a random mix-

ture with red region showing where they are voiced.(b) and (c)

show Ground truth(GT) pitch tracks and estimated pitch tracks,using

TVGMM method and Kalman method respectively. Pitch tracks are

plotted for overlapping voiced regions.

The above results show that TVGMM yields better multi-pitch

estimates than Kalman. However, TVGMM uses a gradient descent

algorithm to estimate its parameters whereas Kalman uses a trained

filter to estimate multi-pitch tracks. Hence, TVGMM is slower in

estimating multi-pitch tracks than Kalman1. But Kalman requires

training which in turn requires speech mixtures with known pitch

tracks. Hence, in the absence of a data set of speech mixtures with

known multi-pitch values, TVGMM is suitable to obtain multi-pitch

tracks. While Kalman could be useful for online estimation (because

of faster processing), TVGMM can be used for offline estimation of

multi-pitch tracks to achieve better estimation accuracy.
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6. CONCLUSIONS

In this paper, we propose TVGMM for estimating multi-pitch tracks

in speech mixtures. The proposed approach uses multiple candidate

pitch values obtained using GCT followed by an estimation of time-

varying means of TVGMM which provide estimates of individual

pitch tracks. The method was applied on all-voiced as well as ran-

dom two speaker speech mixtures. The results show that TVGMM

performs better than Kalman filtering in the GCT based multi-pitch

tracking. In the present formulation of TVGMM, the locations of

the overlapping voiced segments are assumed to be known. Apri-

ori detection of the overlapping voiced segments would make the

TVGMM approach more robust. Multi-pitch track estimates could be

improved by using additional pitch dynamics information from GCT.

The proposed multi-pitch tracking method can also be extended to

non-speech signals showing high degree of harmonicity like pitched

instruments in music. These are parts of our future works.

1An Intel Core i7 processor running MATLAB R2013A, estimates
TVGMM parameters and thereby multi-pitch tracks, of a speech mixture of
duration 1.5s in 8s. Kalman method requires 0.01s for same. MATLAB
code: http://www.ee.iisc.ernet.in/new/people/faculty/

prasantg/Softwares/tvgmm_alg.zip
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