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ABSTRACT

We present a novel method for robustly extracting the funda-
mental frequency (F0) of noisy speech signals. Our method
uses the recently proposed shift autocorrelation to locally em-
phasize harmonically distributed energy in the spectrogram.
Subsequently, a trajectory extraction algorithm based on an
optimization technique is used to determine local F0 contours
of voiced segments. Our evaluation shows that the proposed
method is capable of estimating F0 even in the presence of
severe noises such as in radio communications.

Index Terms— Robust F0 estimation, shift-ACF

1. INTRODUCTION

Robust estimation of the fundamental frequency (F0) of a
given speech signal is important in many speech processing
applications. In this paper we consider the particular case
that the underlying speech signal is corrupted by significant
noise, as it is typical when dealing with outdoor recordings,
phone calls, or radio communication. In such cases, estab-
lished techniques for F0 estimation might fail as either voiced
speech components may be distorted by the transmission
channel or partially masked by secondary signals.

To allow for a reliable F0 estimation even under such ad-
verse conditions, we suggest to use the recently proposed shift
autocorrelation (shift-ACF) [1]. The shift-ACF is based on
emphasizing multiply repeated signal components within a
target signal. In this paper we consider F0 and its harmonics
as such repeating components, allowing us to locally detect
F0 candidates. Concatenating those candidates we then con-
struct voiced speech segments as F0 trajectories. Hence, for a
given speech signal, the proposed method both detects voiced
regions and yields corresponding time-variant F0 estimates.

In recent papers on noise-robust F0 estimation [2] and
multi-band pitch detection [3], Tan and Alwan divide the cur-
rent methods for F0 estimation into three larger categories,
namely time-domain-based, frequency-domain-based, and
time-frequency-domain-based algorithms (see [4] and [5] for
a comparative overview). A widely used method of the first
kind is YIN, the fundamental frequency estimator for speech

Fig. 1. Short-time magnitude spectrum (top), classical ACF
(center), and type 100 shift-ACF (bottom).

and music [6]. This method is based on the autocorrelation
function with some additional modifications for error pre-
vention and noise-robustness. Another state-of-the-art time-
domain implementation of a pitch detection algorithm, which
is included in the Snack Sound Toolkit and in WaveSurfer
(http://www.speech.kth.se/snack/), is commonly known as
the ESPS or get f0 method and follows the robust algorithm
for pitch tracking (RAPT) by Talkin [7], who uses a cross-
correlation function. Both methods are included in the Praat
software (http://www.fon.hum.uva.nl/praat/). An example for
the frequency-based domain is the subharmonic summation
method (shs) introduced in 1988 [8]. A more recent example
for this category is SWIPE, the sawtooth waveform inspired
pitch estimator for speech and music [9].

In order to obtain a noise-robust pitch detector, Tan and
Alwan developed a method [2, 3] that works both in the time
and the frequency domain. Their pitch estimation algorithm
is based on a correlogram, which is a two-dimensional auto-
correlation plot showing correlation statistics. Our proposed
approach employing shift-ACF falls as well in the latter cate-
gory. However, it follows a different approach by applying a
modified version of an autocorrelation function on the spec-
trum of a signal in order to emphasize and detect periodicity
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in the frequency domain.
Our paper is organized as follows. In Sect. 2 we summa-

rize the idea behind the shift-ACF. Sect. 3 then proposes how
to exploit shift-ACF for F0 estimation by first locally detect-
ing F0 candidates which are then concatenated to F0 trajecto-
ries using an optimization approach. In Sect. 4 we provide an
evaluation and show that the proposed approach outperforms
classical techniques in noisy speech scenarios.

2. SHIFT-METHOD AND SHIFT-ACF

The fundamental frequency of voiced speech may be ob-
served as a high energy region within the short time spectrum
x around a frequency F0. Characteristically, harmonic fre-
quencies 2·F0, 3·F0, . . . are as well of high energy. This
motivates an approach to F0 estimation by detecting such
repeated high energy regions as local maxima of the autocor-
relation ACF[x](s) :=

∑
k∈Z x(k) · x(k − s). Fig. 1 shows

a short time magnitude spectrum |x| of voiced speech (top)
with an F0 of about 150 Hz, producing visible peaks at F0
and the first few harmonics. In ACF[x] (center), this results
in a high energy region at the lag frequency of 150 Hz. As in
this example the speech is corrupted by noise, the peaks in x
as well as in ACF[x] are not very pronounced.

Fig. 2. (i) spectral signal x, (ii) frequency-shifted version xs,
(iii) shift-product x·xs, and (iv) shift-minimum min(|x|, |xs|)

In [1], it has been proposed to exploit the presence of mul-
tiple signal repetitions to enhance the ACF. Moreover, in
addition to comparing a signal x with its s-shifted versions
xs(k) := x(k− s) by using shift-products Ps[x](k) := x(k) ·
xs(k) as in classical ACF, it is proposed to additionally use a
shift-minimum operatorMs[x](k) := min(|x(k)|, |x(k−s)|)
to eliminate artifacts caused by non-repeating components.
The effects of both operators are illustrated in Fig. 2, show-
ing (i) a synthetic spectral signal x with a component at p1
repeated two times (at p2 and p3) at a lag of s between two

Fig. 3. (1) Speech spectrogram, (2) spectral shift-ACF type
100, (3) spectral ACF.

successive components. In (ii), the shifted version xs(k) is
shown which is the main building block of classical ACF,
where, for a lag s, ACF[x](s) is the sum over the shift-product
Ps[x] shown in (iii). Shift-products involving background
noise may produce ghost components such as indicated by
G1 and G2. In [1] the usage of the shift-minimum operator is
proposed to eliminate such ghost components as illustrated in
(iv), and hence avoid possible artifacts within the ACF.

By combining the type 0 shift-product operator O0
s := Ps

to emphasize repeating components and the type 1 shift-
minimum operator O1

s := Ms to suppress non-repeating
components, a general shift-method framework is established
by operator composition Ots := Ot1s ◦ · · · ◦ Otns where
t = (t1, . . . , tn) ∈ {0, 1}n specifies the sequence of applied
minimum and product operators. The shift-ACF of type t is
then defined as ACFt[x](s) :=

∑
k∈ZOts[x](k). Note that

classical ACF is the special case of a type 0 shift-ACF. As
noted in [1], an n-fold iteration of shift-operators implies
that repeated components are represented by peaks within the
shift-ACF where the peak width is decreasing as a function
of n, implying an improved sharpness. The latter is illus-
trated in our previous example: Fig. 1 (bottom) shows the
type 100 shift-ACF. Clearly, the peak around 150 Hz is more
pronounced as in the classical ACF (center).

3. F0-ESTIMATION USING SHIFT-ACF

To estimate the time-varying F0 we first compute the shift-
ACF for successive time frames of a speech signal y. For this,
we compute the spectrogram SG[y], where the j−th column
SG[y]:,j is obtained by computing the discrete Fourier trans-
form of a suitably windowed version of the j-th time frame
(yjS , . . . , yjS+N−1) of length N extracted from y using step
size S. Then the spectral shift-ACF of type t is defined by
SpACFt[y](s, j) := ACFt[SG[y]:,j ](s), i.e., by independently
computing the shift-ACF for each spectrogram column.
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Fig. 4. (1) Peaks extracted from spectral shift-acf and (2)
paths extracted by optimization approach.

Fig. 5. Regions involved in computing trajectory sharpness.

Fig.3 shows the spectrogram (1) of a clean speech sig-
nal (male speaker) of length 2.4 seconds taken from the Kiel
corpus [10]. For illustration, only frequencies up to 2 kHz
are shown. In the center (2), the type 100 spectral shift-ACF
is shown, where columns were postprocessed by normaliza-
tion and thresholding by the median. The F0 is cleary visible
by sharp temporal trajectories between 130 and 190 Hz. For
comparison, (3) shows the type 0 spectral shift-ACF, corre-
sponding to the classical ACF. Here, trajectories are more
blurred and significant energy is present at harmonic lags.

Now we extract significant time-varying F0 trajectories
from the spectral shift-ACF. First, a peak picking step is
performed. As F0 trajectories evolve in temporal direction,
this is done by successively considering each colum cj :=
SpACFt[y]:,j . After thresholding cj by a smoothed, median-
filtered version, peaks are picked iteratively. Using a greedy
approach, in each step a maximum position is selected. In
subsequent iterations, the neigborhoods of already chosen po-
sitions are ignored. In Fig. 4 (1), peaks extracted from a re-
gion of our example in Fig. 3 (2) are shown as white circles.

For trajectory extraction we consider the set of m ex-
tracted peaks as nodes in a graph. We then enforce paths
by connecting each node to exactly one successor node by
computing a bijection π : [1 : m] → [1 : m] such that the to-
tal cost

∑m
i=1 Ci,π(i) of connecting nodes is minimized. The

costs Ci,j of connecting node i to j are chosen to provide rea-
sonable F0 trajectories: Ci,j is set to the Euclidean distance
between peaks i and j, where Ci,j :=∞ if peak i temporally
occurs after peak j. Furthermore, Ci,i := ∞ to prohibit 1-
cycles. By introducing additional dummy nodes at a suitable
maximum distance of each node, we furthermore allow a path
to start or end at each node. The resulting optimization prob-

Table 1. Test material and parameters for F0 annotation.
Clean Scenario Real Scenario

Database KIEL-DB RADIO-DB
Length ≈ 10 minutes ≈10 minutes
Fs 22050 Hz 8000 Hz
Language German various
Time Res. ≈ 11 ms ≈ 16 ms
Freq. Res. ≈ 5.4 Hz ≈ 3.9 Hz

Fig. 6. Performance of the different algorithms on the
KIEL-DB for different SNRs of added white noise.

lem is a special case of a linear assignment problem (LAP)
which can be efficiently solved using, e.g., the algorithm pro-
posed in [11]. A result of the path extraction for our running
example is shown in Fig. 4 (2).

Finally, paths which are too short or have only insignifi-
cant energy are discarded. For this, we use a trajectory sharp-
ness measure such as in [1]. This measure, as illustrated
in Fig. 5, basically computes a logarithmic energy ratio be-
tween an inner region Iτ around the estimated trajectory and
an outer region Oτ := O1

τ ∪ O2
τ . By construction, existing

trajectories result in positive sharpness values. Fig. 5 shows
the sharpness measure evaluated for the finally resulting F0
trajectories in white color.

4. EVALUATION

The aim of our proposed algorithm is to detect voiced seg-
ments in a noisy signal and provide F0 trajectories, i.e., time-
varying F0 estimates, for such segments. To evaluate our
method, we have conducted two different kinds of tests: ex-
periments in controlled settings, i.e., with clean speech dis-
turbed by noise and experiments on real audio signals, partic-
ularly focussing on a radio communications scenario. The test
material consists of two databases of approximately 10 min-
utes length each. For clean speech we have used files taken
from the Kiel corpus [10]: The files (refered to as KIEL-DB)
consist of phrases in German language spoken by both women
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Table 2. Performance of the different algorithms for clean
speech disturbed by noise and for HF radio speech.

Machine gun Factory RADIO-DB
Shift-ACF 0.5143 0.7196 0.3529
Praat (ac) 0.5712 0.9125 0.8002
Praat (cc) 0.5413 0.8516 0.6944
Praat (shs) 0.5598 0.8471 0.7111
YIN 0.6373 0.9112 0.8287
Snack (esps) 0.8185 0.8776 0.8054

and men. The sampling frequency (Fs) is 22050 Hz. Our test
database of real audio scenarios consists of 8 kHz speech sig-
nals from a HF- (high frequency band) radio communication,
and is refered to as RADIO-DB.

The ground truth for evaluating F0 estimation perfor-
mance was annotated from the spectrogram using a Matlab-
based annotation software. An overview of the test material
we used as well as the time and frequency resolutions we
have fixed for the manual annotation is given in Table 1. For
annotation, we evaluated the F0 in regular time steps, which
correspond to 11 ms for the KIEL-DB and to 16 ms for the
RADIO-DB. Each file has been labelled by two persons. The
resulting label files have been compared point by point. In
cases where the annotated F0 differed by more than 15 Hz,
annotation was reconsidered and adjusted manually.

In both experiments, our algorithm has been compared to
other commonly used F0 estimation methods:

• Praat (ac), based on an ACF [12] and available with the
Praat software http://www.fon.hum.uva.nl/praat/.

• Praat (cc), based on a cross-correlation analysis.

• Praat (shs), based on subharmonic summation [8].

• YIN, based on ACF and some modifications [6], avail-
able at http://audition.ens.fr/adc/sw/yin.zip.

• Snack (esps): A standard pitch tracking software using
the Entropic Signal Processing Software (ESPS) algo-
rithm which goes back to RAPT [7], a method also used
in Wavesurfer [13]. An implementation can be found at
http://www.speech.kth.se/snack/.

In order to compare all F0 estimation methods to the
ground truth, we run all the algorithms using the same time
resolution. In each step, we get an F0 estimate for the cor-
responding time interval. Each estimate is compared to the
ground truth. A box of width equal to the step size and vari-
able height is built around each F0-point of the ground truth.
If the estimated F0 lies inside this box, a true positive (TP)
is assumed, which means that the estimation is correct. F0
estimates outside the box regions are assumed to be false

positives (FP). For all the results reported in this paper we
have used an interval of ±15 Hertz around the ground truth
points to build the boxes. Running an estimation algorithm
thus results in a performance point p = (FP-rate,TP-rate).
Performance of an algorithm is measured by the Euclidean
distance of p to the optimal point popt = (0, 1), where a
smaller distance means better performance.

Tests on clean speech were performed on the KIEL-DB.
For each file we have run all the combinations of length
two and three shift-ACFs, i.e., for all operators of types
t ∈ {0, 1}2 ∪ {0, 1}3, in order to find out the one performing
best. In our experiments, the type 010 shift-operator yields
the best results, closely followed by the type 100 operator.
This optimum shift type was then used for F0 estimation
on all of the noisy signals. To do so, noise with different
signal-to-noise ratios (SNR) has been added to each file. In
particular we have considered SNRs in the interval from −16
to 16 dB. The results on the whole database for added white
noise are shown in Fig. 6. For each SNR value, the distance
from its performance point to popt is indicated. Clearly with
increasing noise level the shift-ACF method performs best.

In addition to adding white noise, we have added sev-
eral other kinds noises taken from the NOISEX corpus to the
KIEL-DB. Table 2 shows corresponding results for the cases
of a machine gun noise with SNR ≈ −3dB and factory noise
with SNR ≈ −8dB. Also in these cases the proposed shift-
ACF leads to improved results. Table 2 furthermore shows
the F0 estimation performance on the radio communication
files. Here, noises are usually more severe depending on the
characteristics of the radio channel. Also, in the HF radio
band, time varying noise is usually considerable. In this case
the improvement given by the shift-ACF is even more signif-
icant as in the artificial noise scenarios.

5. CONCLUSIONS

In this paper we proposed to use the recently introduced shift-
ACF for estimating the F0 of noisy speech signals. The shift-
ACF is used for emphasizing the harmonic parts of a speech
signal based on the assumption that, for each voiced segment,
at least a few adjacent harmonics are present. Extraction of
a sequence of F0 trajectories is performed using a greedy
peak picking technique with a subsequent path extraction step
which is based on solving an optimization problem. In our ex-
periments we compare the proposed method to classical ap-
proaches and show that significant improvements in F0 esti-
mation may be obtained for the case of noisy signals.

Regarding future work we note that the selection of opti-
mum types for shift-ACF up to now was experimental. How-
ever, suitable operator lengths (in our case 2 or 3) were moti-
vated by an assumed minimum number of available harmon-
ics. Furthermore, our theoretical investigations have shown
that shift operators can be compared by a partial order, which
can help to simplify operator selection in the future.
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