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ABSTRACT

We introduce in this paper a new fully distributed particle
filter (PF) algorithm based on random information diffusion
that is capable of performing joint multi-frame detection and
tracking of a single moving emitter using a cooperative net-
work of multiple received-signal-strength (RSS) sensors. Un-
like previous consensus-based distributed PF schemes, the pro-
posed Random Exchange Diffusion Particle Filter (ReDif-PF)
does not require multiple iterative inter-node communication
in the time interval between the arrival of two consecutive sen-
sor measurements. Inter-node communication cost is further
reduced by suitable parametric approximations.

Index Terms— Distributed Particle Filters, RSS Emitter
Tracking, Diffusion, Joint Detection and Tracking

1. INTRODUCTION

In modern engineering systems, multiple processors with sens-
ing and communication capabilities of their own cooperate
to execute a global task without forwarding their local mea-
surements to a data fusion center. Most existing distributed
estimation algorithms, e.g. distributed Kalman filters [1], [2],
[3] rely, however, on the assumption of linear, Gaussian state-
space models. Distributed particle filtering [4] is an emerging
technique that seeks to overcome the limitations of linear dis-
tributed Kalman filters in nonlinear/non-Gaussian scenarios.
In particular, consensus-based distributed PF algorithms can
reasonably approximate [5], [6], [7] or exactly reproduce [8]
the global state estimate generated by a centralized PF running
on a data fusion center. However, they require multiple iter-
ative inter-node communication between consecutive sensor
measurements, which is undesirable in real-world applications.

To circumvent the communication-cost limitations of
consensus-based PF, we introduced in [9] the suboptimal
Random Exchange Diffusion Particle Filter (ReDif-PF), which
does not require iterative message passes between nodes.
ReDif-PF diffuses information over the network by building
over time, at each network node, different Monte Carlo rep-
resentations of the posterior distribution of the target state

conditioned on different sets of measurements coming from
random locations in the entire network.

The ReDif-PF algorithm in [9] was applied specifically to
a problem of cooperative emitter tracking using a network of
received-signal-strength (RSS) sensors assuming that the target
is always present. In this paper, we modify the algorithm in
[9] to perform joint detection and tracking with a probability
of detection less than one and a probability of false alarm
greater than zero. Unlike the conventional contact/association
approach [10] that decouples detection and tracking, we follow
the methodology in [11] that enables integrated, multi-frame
detection and tracking from raw sensor measurements only,
but now adapted to a scenario with multiple observers and
fully distributed processing over a partially-connected network
where each node is allowed to communicate only with its
immediate neighbors.

The paper is divided into 6 sections. Sec. 1 is this Introduc-
tion. Sec. 2 describes the emitter’s state model and the RSS
sensor model. In Sec. 3, we review the optimal centralized PF
detector/tracker. Sec. 4 introduces the new ReDif-PF detec-
tor/tracker and discusses suitable parametric approximations
that further reduce the inter-node communication cost. The
performance of the algorithm is investigated in Sec. 5 using
simulated data. Finally, we present our conclusions in Sec. 6.

2. TARGET AND OBSERVATION MODEL

The unknown target state at instant n is represented by a pair
(sn,xn)1 where sn is a discrete random variable that takes the
value zero if the target is absent from the surveillance space
at instant n, and the value one if the target is present. The
real-valued random vector xn ,

[
xn ẋn yn ẏn

]T
is in

turn the hidden kinematic state vector of the target at time
step n consisting of the positions and velocities of the target’s
centroid respectively in dimensions x and y.

Following the model in [11], an absent target enters the
surveillance space Ω ⊂ R2 with probability pa. Once a target
becomes present, it can only become absent, i.e. change its

1For simplicity of notation, we use lowercase letters to denote both random
variables/vectors and samples of random variables/vectors.
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state sn from one to zero, if it physically leaves the space
Ω. For simplicity, we also assume in this paper that no more
than one target may be present in the surveillance space at
any given time instant. Denoting by Pr(A) the probability
of an event A, the aforementioned assumptions imply then
that the state sequence {(sn, xn)} evolves in time according
to a coupled probabilistic model such that Pr({sn = i} |
{sn−1 = j} , xn−1) is equal to

Pr({xn ∈ Ω} | xn−1, {sn−1 = j}) i = 1; j = 1
1− Pr({xn ∈ Ω} | xn−1, {sn−1 = j}) i = 0; j = 1

pa i = 1; j = 0
1− pa i = 0; j = 0

(1)
We assume a present target moves inside the surveillance grid
according to a specified kinematic transition probability den-
sity function (p.d.f.) f(xn|xn−1) and that, following a target
birth, the initial state of the new target is randomly sampled
from a memoryless initial state p.d.f. fa(xn) such that the
coupled transition p.d.f. p(xn|xn−1, {sn = i}, {sn−1 = j})
is given by f(xn|xn−1) if i and j are equal to one and fa(xn)
if i = 1 and j = 0.

Without loss of generality, we make fa(xn) a non-
informative uniform p.d.f. and f(xn|xn−1) = N (xn|Fxn−1,
Q), where N (·|µ,Σ) denotes a multivariate normal p.d.f.
with mean vector µ and covariance matrix Σ. The matrices
F and Q, parameterized by the sampling period ∆ and the
acceleration noise standard deviation σaccel, are specified by
the white noise acceleration model [10].

Finally, when a target disappears from the surveillance grid
or remains absent, we arbitrarily set its kinematic state to an
identically zero vector.

Observation Model The measurements zr,0:n = {zr,0, . . .
zr,n} in dBm at the r-th node of a network of R RSS sensors
are modeled as

zr,n = gr(xn, sn) + vr,n (2)

where {vr,n} represents a zero-mean i.i.d. Gaussian noise
process with known variance σ2

r . If sn = 1, gr(·, 1) is a
nonlinear function given by [12]

gr(x, 1) = P0 − 10 ζr log

(‖Hx− xr‖
d0

)
(3)

where xr represents sensor position, ||.|| is the Euclidean norm,
(P0, d0, ζr) are known model parameters, see [12] for a full
description, and H is a 2 × 4 matrix such that H(1, 1) =
H(2, 3) = 1 and H(i, j) = 0 otherwise. We also denote by
Nr the set of nodes in the neighborhood of node r.

Otherwise, if sn = 0, we assume for simplicity, unlike
in previous work, e.g. [13], [14], that there are no clutter
measurements and the sensors only record background noise,
i.e gr(x, 0) = 0.

3. JOINT DETECTION AND TRACKING USING A
CENTRALIZED NETWORK PARTICLE FILTER

At each instant n, the optimal centralized particle filter repre-
sents the mixed posterior distribution of (sn,xn) conditioned
on all present and past network observations z1:R,0:n by a
weighted set of particles, {(s(q)n ,x

(q)
n )} with corresponding

weights {w(q)
n }, q ∈Q , {1, . . . , Q}, such that [11], [15]

Pr({sn = i}|z1:R,0:n) ≈
∑

q|s(q)n =i

w(q)
n (4)

E{xn|{sn = 1}, z1:R,0:n} ≈
∑

q|s(q)n =1

w
(q)
n∑

l|s(l)n =1
w

(l)
n

x(q)
n (5)

where E{.} stands for expected value and i ∈ {0, 1} in (4).
Using a blind importance function [15], [16], the particles

(s
(q)
n ,x

(q)
n ) are sequentially sampled, given x

(q)
n−1 and s(q)n−1 as

s(q)n ∼ P (sn|s(q)n−1,x
(q)
n−1) (6)

x(q)
n ∼ p(xn|x(q)

n−1, s
(q)
n , s

(q)
n−1) (7)

where the functions on the right-hand side of Eq. (6) and (7)
are defined respectively as P (i|j,xn−1) = Pr({sn = i} |
{sn−1 = j} , x

(q)
n−1) and p(xn|x(q)

n−1, s
(q)
n , s

(q)
n−1) = p(xn|

x
(q)
n−1, {sn = i} , {sn−1 = j}) for i, j ∈ {0, 1}. The proper

importance weights can in turn be recursively propagated as
[15], [16], [17]

w(q)
n ∝ w

(q)
n−1 p(z1:R,n|x(q)

0:n, s
(q)
0:n, z1:R,0:n−1) (8)

= w
(q)
n−1

R∏
r=1

p(zr,n|x(q)
n , s(q)n ) (9)

where line (9) follows from the assumption that the obser-
vation noise vectors {vr,n} are mutually independent for all
n ≥ 0 and all r ∈ R , {1, . . . , R} and also independent
of the hidden state sequence {(sn,xn)}. In a centralized al-
gorithm, all observations zr,n are sent to a data fusion center
that computes the likelihood functions p(zr,n|x(q)

n , s
(q)
n ) =

N (zr,n|gr(x
(q)
n , s

(q)
n ), σ2

r) for all r ∈ R and all q ∈ Q and
then updates the weights {w(q)

n } using Eq. (8). Note that if the
sampled value of s(q)n in (6) is 0, the new particle x

(q)
n is sup-

posed to be outside the surveillance space Ω and, according
to (2), is not observable, thus it does not affect the calculus of
the corresponding importance weight w(q)

n in (8) and, as previ-
ously stated, can be arbitrarily set to an identically zero vector
to avoid unnecessary computational processing. The filter then
builds the Monte Carlo approximation Pr({sn = i} |z1:R,0:n),
i ∈ {0, 1}, on the right-hand side of Eq. (4) and applies the
minimum probability of error detection test

Pr({sn = 0} |z1:R,0:n)
H0
>
<
H1

1− Pr({sn = 0} | z1:R,0:n).

(10)
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If the target is declared present, i.e. if hypothesis H1 is ac-
cepted, its kinematic state xn is then estimated using the Monte
Carlo approximation to E {xn| {sn = 1} , z1:R,0:n}, i.e. we
make the estimate x̂n|n equal to the right-hand side of Eq. (5).

4. DISTRIBUTED DETECTION AND TRACKING
USING REDIF-PF

Given the independence assumption in (9), the global impor-
tance weights in (8) can be computed exactly in a fully dis-
tributed fashion without a data fusion center using, as shown
in [8], R times D minimum consensus iterations where D is
the diameter of the network graph. Synchronized importance
sampling and resampling [18] at each node according to the
consensus weights ensures that all nodes keep an identical set
of particles at all time instants. To reduce the communica-
tion burden associated with the consensus-based solution, we
follow a different approach in this paper.

Specifically, assume that, at instant n − 1, node t has a
properly weighted set of particles {(s(q)t,0:n−1,x

(q)
t,0:n−1)} with

associated weights {w(q)
t,n−1}, which form a Monte Carlo rep-

resentation for the joint posterior distribution of s0:n−1 and
x0:n−1 given Zt,0:n−1 where Zt,0:n−1 is the set of all mea-
surements (possibly coming from different network nodes)
that have been processed by node t up to instant n− 1. Simi-
larly, node r with r 6= t has at instant n− 1 a set of samples
{(s(q)r,0:n−1,x

(q)
r,0:n−1)} with weights {w(q)

r,n−1} that represent
the joint posterior distribution of s0:n−1 and x0:n−1 given
Zr,0:n−1.

In the sequel, assume now that nodes r and t exchange
their sample sets and respective weights at instant n− 1. At
instant n, the new particle set at node r, (s

(q)
r,0:n,x

(q)
r,0:n) =

(s
(q)
t,0:n−1, s

(q)
r,n,x

(q)
t,0:n−1,x

(q)
r,n) with updated weightsw(q)

r,n such
that

s(q)r,n ∼ P (sn|s(q)t,n−1,x
(q)
t,n−1) (11)

x(q)
r,n ∼ p(xn|x(q)

t,n−1, s
(q)
r,n, s

(q)
t,n−1) (12)

w(q)
r,n ∝ w

(q)
t,n−1

∏
l∈Nr∪{r}

p(zl,n|x(q)
r,n, s

(q)
r,n), (13)

can be shown, using a procedure analogous to that in the
appendix of reference [9], to be, under the conditional inde-
pendence assumptions in the model, a properly weighted set
to represent the updated joint posterior distribution of s0:n and
x0:n conditioned on the new set of measurements Zr,0:n =
(Zt,0:n−1,Zr,n), where Zr,n = {zl,n}l∈Nr∪{r}.

Random Exchange Protocol To build, at each instant n and
at each node r, a Monte Carlo representation of a posterior
distribution conditioned on a set of observationsZr,0:n consist-
ing of measurements coming, at each time step, from different
random locations in the entire network and not only from the
node’s immediate neighborhood, it suffices to implement a pro-
tocol where each node r, starting from instant zero, performs

the aforementioned particle/weight exchange with a randomly
chosen neighboring node t, propagates the received particles
using the blind importance function as in Eqs. (11) and (12),
and then updates their weights as in Eq. (13).

Each node r, at instant n, can then build its own Monte
Carlo approximations

Pr({sn = i} |Zr,0:n) ≈
∑

q|s(q)r,n=i

w(q)
r,n i ∈ {0, 1}, (14)

perform the detection test

Pr({sn = 0} |Zr,0:n)
H0
>
<
H1

1− Pr({sn = 0} | Zr,0:n), (15)

and, if the target is declared present, estimate its kinematic
state as

E {xn| {sn = 1} ,Zr,0:n} ≈
∑

q|s(q)r,n=1

w
(q)
r,n∑

l|s(l)r,n=1
w

(l)
r,n

x(q)
r,n.

(16)

4.1. Low-Communication-Cost ReDif-PF

The ReDif-PF algorithm in Sec. 4 eliminates the need for
iterative inter-node communication, but still requires the trans-
mission of Q particle pairs and weights per node at each time
step. To circumvent that limitation, we propose to use the
weighted particle set {(s(q)t,0:n−1,x

(q)
t,0:n−1)} with associated

weights {w(q)
t,n−1} at node t at instant n − 1 to compute the

approximate posterior probabilities

P̃ r({sn−1 = i} |Zt,0:n−1) =
∑

q|s(q)t,n−1=i

w
(q)
t,n−1 i ∈ {0, 1}

(17)
and the parametric Gaussian Mixture Model (GMM) approxi-
mation p̃(xn−1| {st,n−1 = 1} ,Zt,0:n−1) given by

K∑
k=1

η
(k)
t,n−1N (xn−1|µ(k)

t,n−1,Σ
(k)
t,n−1), (18)

which is obtained using the Expectation-Maximization (EM)
algorithm [19]. Node t then transmits to node r at instant
n the approximate posterior probabilities in (17), i.e. only
one real number (since the two posteriors add up to one), and
the parameters that specify the approximate p.d.f. in (18), i.e.
15K real numbers, where K << Q.

Node r then locally resamples s
(q)
t,n−1 ∼ P̃ (sn−1|

Zt,0:n−1), q ∈ Q, and, if the resampled s(q)t,n−1 = 1, draws

x
(q)
t,n−1 ∼ p̃(xn−1| {st,n−1 = 1} ,Zt,0:n−1). Next, node r

draws new particles
{

(s
(q)
r,n,x

(q)
r,n)
}

as in (11) and (12), and
updates its local weights using (13). Note that, if the resam-
pled s(q)t,n−1 = 0, the particle x

(q)
t,n−1 is not necessary to sample

the new particles (s
(q)
r,n,x

(q)
r,n).

1479



5. SIMULATION RESULTS
The performance of the ReDif-PF tracker was assessed using
100 independent Monte Carlo runs in a simulated scenario
consisting of R = 25 RSS sensors deployed on a jittered grid
within a squared surveillance space Ω of size 110 m× 110 m.
Furthermore, each node communicates with other nodes within
a range of 40 m. The sensors’ parameters were kept fixed
during all simulations and set to P0 = 1 dBm, d0 = 1 m,
ζr = 3, ∀r ∈ R. The variances σ2

r ’s were independently
sampled according to an Inverse Gamma p.d.f. with mean 16.

The initial state distribution fa(xn) for newly initialized
tracks was assumed an uniform p.d.f. on a square Ωa ⊂
Ω of size 30 m × 30 m for the emitter’s initial position in
Cartesian coordinates and a Gaussian p.d.f. with mean vector[√

2 m/s 45◦
]T

and covariance matrix diag(0.32, 52) for the
emitter’s initial velocity in polar coordinates.

Fig. 1 shows the sensor positions and two consecutive
realizations of the emitter trajectory generated within a sim-
ulation period of 200 s for ∆ = 1 s, σaccel = 0.05 m/s2 and
pa = 0.75. It also depicts the available network connections.
The diameter of the sensor network is D = 5 hops and the
minimum number of neighbors for any possible node is three.
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Fig. 1. Evaluated scenario.
All filters employed Q = 500 particles to estimate the

emitter state. The particles at each node r were initialized at
time step 0 with s(q)r,0 = 0, ∀q ∈ Q. After a transition from

s
(q)
r,n−1 = 0 to s(q)r,n = 1 at a given time step n, a particle q had

its state x
(q)
r,n initialized according to the distribution fa(xn).

Fig. 2 shows the evolution of the root-mean-square (RMS)
error norm of the emitter position estimates for the proposed
ReDif-PF using a single Gaussian, i.e. K = 1, and for the
minimum-consensus CbPFa algorithm in [8], also adapted in
this paper for joint detection and tracking. The bars shown
in Fig. 2 along the ReDif-PF’s curve represent the standard
deviation of the error norm across all network nodes. The RMS
error at time step 0 was calculated after the measurements
z1:R,0 were assimilated. Compared to CbPFa, which exactly
mimics the optimal centralized PF [8], the ReDif-PF tracker
has a greater RMS error since it assimilates less information

at each network location than the former. Moreover, since the
RMS error norm was computed at each time n considering just
the first simulated emitter trajectory of each Monte Carlo run,
it increases and then becomes more noisy for both algorithms
after time instants 50 s and 100 s, respectively, as the first
emitter tends to leave the surveillance space Ω (see Fig. 1).
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Fig. 2. Evolution of the estimated position RMS error norm.
Assuming a four-byte representation for real numbers, we

recorded the total amount of bytes exchanged by all network
nodes while running each filter. The average transmission
(TX) and reception (RX) rates per node were then calculated
by dividing respectively the average total amount of data trans-
mitted and received considering all Monte Carlo runs by the
simulation period (200 s) and, then, by the number of nodes R.
Additionally, the average duty cycle per node was calculated
by dividing the average total processing time at each node
considering all Monte Carlo runs by the simulation period.

Table 1 summarizes the computed performance metrics
for each algorithm. The ReDif-PF tracker has an average
communication cost per node three orders of magnitude lower
than that of the CbPFa with half the processing cost.

Table 1. Performance metrics of the evaluated algorithms.
RX Rate TX Rate Duty Cycle

CbPFa 1.2 MB/s 244.1 KB/s 23.2 %
ReDif-PF 148 B/s 132 B/s 12.9 %

Detection Performance Finally, we estimated the average
Pfa and Pd for the ReDif-PF detector dividing the total count
of false alarms and accurate detections respectively by the
total number of detection decisions made by all network nodes
throughout the simulations, i.e. 201 × 100 × 25. We obtained
an average Pd = 99.9 % with average Pfa = 0.12 %.

6. CONCLUSIONS
We introduced in this paper a new version of the fully dis-
tributed Random Exchange Diffusion Particle Filter which
enables joint multi-frame detection and tracking of a single
target in a partially connected network of RSS sensors using
raw sensor data only. The proposed algorithm does not require
iterative inter-node communication between sensor measure-
ments and achieves high probability of detection with low false
alarm rates and RMS tracking error close to that of the optimal
centralized particle filter.
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