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ABSTRACT

This paper presents a Bayesian multi-sensor tracking strategy for a

network of autonomous underwater vehicles (AUVs) for the purpose

of anti-submarine warfare (ASW). A bistatic configuration and the

corresponding acoustic model for the bistatic signal-to-noise ratio

(SNR) is used. The Bayesian posterior distribution of the target state

based on all available information from sensors and on the acoustic

model is reconstructed via particle filtering methods, taking into ac-

count the port-starboard ambiguity typical of horizontal line arrays.

The posterior distribution is the optimal estimation procedure, the

only approximation derives from the particle representation. The ef-

fectiveness of the proposed algorithm is demonstrated on a real data

set collected by the NATO Centre for Maritime Research and Exper-

imentation (CMRE) during the NATO Proud Manta 2012 exercise

(ExPOMA12).

Index Terms— Data fusion, Antisubmarine warfare, multistatic

active sonar, target tracking, particle filtering, port-starboard ambi-

guity, underwater wireless sensor networks, autonomous underwater

vehicles.

1. MOTIVATION AND RELATEDWORKS

Submarine detection, localization, and tracking in shallow water

continues to be a problem of interest. While passive systems suffer

from the low radiated noise levels of modern submarines, active

systems are plagued by reverberation and clutter. A multistatic sys-

tem [1–4] offers several advantages over a single source-receiver

pair in either a monostatic or bistatic configuration. For example,

it offers aspect diversity in the target echoes which, because of the

strongly aspect dependent target strength, increases the chance of

catching a specular target echo, or “glint.” This depends on the usu-

ally unknown, or poorly known, target heading and the placement

of the source(s) and receivers. One fundamental advantage of mul-

tistatics is that, through the simultaneous deployment of multiple

sensors, the probability of detecting a “glint” echo is increased.

Traditional ASW assets generally use large aperture towed or

flank arrays, but these platforms are expensive to operate. Dis-

tributed mobile and stationary sensors, such as sonobuoy fields

and AUVs, have recently been suggested to replace or supple-

ment conventional assets. Compared to standard assets these small,

low-power, mobile devices have limited onboard processing and

communication capabilities. Due to their low hardware/software

needs and the complexity of the shallow water environment, indi-

vidual sensors can only perform simple onboard computation and

communicate over a short range at low data rates. When deployed

in large numbers across a surveillance region, these primitive sen-

sors can form an intelligent network achieving high performance.

An overview of underwater wireless sensor networks can be found

in [5].

Horizontal line arrays are typically used as receivers. These are

cylindrically symmetric and therefore cannot discriminate left from

right, or port from starboard. Such an ambiguity complicates the

detection and tracking algorithms and may severely degrade perfor-

mance. Several approaches have been proposed to overcome these

difficulties, including multiline arrays, e.g. twin arrays [6] and triplet

arrays [7]. However the use of multiline arrays requires the use of a

higher number of hydrophones to achieve the same directivity of a

single line array (e.g. double for the twin array). This reduces the

aperture size for a fixed number of hydrophones, which for an AUV

with limited complexity is generally small.

In [8, 9] a Bayesian tracking approach is proposed to track the

target state (position and velocity) in presence of port–starboard

ambiguous data. In this paper the Bayesian filtering approach is

extended in order to take into account environmental acoustic ef-

fects. A model for the probability of detection (PD) for each of the

source/receiver pairs as a function of target position is given. The

probability of detection can vary dramatically over the surveillance

region, and is in general a function of the receiver array parameters,

source parameters, and environmental parameters as such as bottom

scattering strength, water column and bottom sediment density and

sound speed, and bottom and surface roughness and reflection loss.

Numerical and/or closed-form acoustic propagation models [10–12]

are then used to calculate the predicted SNR and PD . The proposed

tracking technique takes advantage of the ability of the acoustic

model to predict the detection probability of the target in any posi-

tion in the surveillance region.

The approach presented here has been applied on real-world data

collected during ExPOMA12, conducted by the CMRE (formerly

known as SACLANTCEN and NURC). The NATO Research Ves-

sel (NRV) Alliance and the CMRE’s underwater networks with the

multistatic sonar system were used, and results from these data are

reported in the following sections.

2. PROBLEM FORMALIZATION

A network of Ns sensors (or vehicles) is considered. A single target

is assumed to sail across the surveillance region S, and the objective
of the sensor network is to estimate its kinematic state at each time

scan k.
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Fig. 1. Sketch of the port-starboard ambiguity in the bistatic geome-

try.

2.1. Target dynamic model

The target dynamic, defined in Cartesian coordinates, is expressed

in terms of a Markovian process [13], the target motion state vector

is xk = [xk, ẋk, yk, ẏk]
T
, where the two positions are xk, yk, and

ẋk, ẏk are the corresponding velocities. Given the typical motion of
such targets, a nearly constant velocity model [13] can be adopted

xk = F kxk−1 + Γkvk, (1)

where F k is the state transition matrix, Γkvk takes into account the

target acceleration or unmodeled dynamics. The term vk is typically

assumed to be Gaussian with zero-mean and covariance matrixQ.

2.2. Target measurement model with PS ambiguity

In this subsection the model for the target-originated measurements

is introduced for a generic sensor. Consider the geometry given in

Fig. 1. Let sk = [sxk, s
y
k]

T
denote the source position at time scan k,

while the sensor array position and his heading angle are indicated

by pk = [pxk, p
y
k]

T
and hk, respectively. The sensor measures the

bistatic range bk from source to target to receiver and the bearing

angle relative to the array heading θk. The non-ambiguous measure-
ment is given by

zk =

[

bk
θk

]

=

[

‖xp
k − pk‖+ ‖x

p
k − sk‖ + wb

k

tan−1
(

yk−p
y
k

xk−px
k

)

− hk + wθ
k

]

,

wk =

[

wb
k

wθ
k

]

∼ N

([

0
0

]

,

[

σ2
b 0
0 σ2

θ

])

,

where wb
k and wθ

k are the additive noise to the range and bearing.

The port-starboard ambiguous contacts have the same bistatic range

measurement but different bearing angles, one θPk from receiver to

the target on the port side, and another θSk from receiver to target on

the starboard side. Then zP
k =

[

bk, θ
P
k

]T
and zS

k =
[

bk, θ
S
k

]T
are

given by






















θPk = θk, θ
S
k = −θPk , if tan−1

(

yk − pyk
xk − pxk

)

≥ hk,

θSk = θk, θ
P
k = −θSk , if tan−1

(

yk − pyk
xk − pxk

)

< hk,

note that it always holds that θPk = −θSk ∈ [0, π], with θk ∈
[−π, π].

2.3. Measurement model in presence of missed detections and

clutter

At each time scan k a set of data is observed, whose cardinality

is the number of detections. The target is considered a point and

is observed at the sth sensor with a detection probability PD,s(x)
which depends on the target state x. All the other echoes are clutter,

independent of the target’s state, the number of which is typically

modeled as a Poisson random variable with rate λ, see also [13–17].
The data set Zs,k of the whole measurement set for the s

th sen-

sor at time k is defined as

Zs,k =
{

z
P
i,s,k

}ms,k

i=1
, (2)

where ms,k is the number of measurements. Only the port contacts

have been considered, since they form a sufficient statistic, because

of the deterministic dependence of the starboard contacts on the port

contacts. The aggregate in time of the data up to time step k is

indicated as Z1:k = Z1, Z2, . . . , Zk, where Zk = {Zs,k}
Ns

s=1.

3. OPTIMAL BAYESIAN INFERENCEWITH PS

AMBIGUITY

In the Bayesian approach to dynamic state estimation, the goal is to

construct the posterior probability density distribution (pdf) of the

state based on all available information, including the set of received

measurements. Since this pdf embodies all available statistical infor-

mation, it contains the complete solution to the estimation problem,

and the optimal (with respect to any criterion) estimate of the state

may be obtained from the posterior.

The posterior of the target’s state in Eq. (1) is given by the

Bayes’ rule

P (xk |Z1:k ) =
Lk (Zk |xk )P (xk |Z1:k−1 )

P (Zk |Z1:k−1 )
, (3)

where the prior at time k is given by

P (xk |Z1:k−1 ) =

∫

P (xk |xk−1 )P (xk−1 |Z1:k−1 ) dxk−1

and P (xk |xk−1 ) is ruled by the dynamic model in Eq. (1). Given
that the sensors are conditionally independent on target position, the

likelihood Lk (Zk |xk ) can be factorized

Lk (Zk |xk ) =

Ns
∏

s=1

Ls,k (Zs,k |xk ) , (4)

where Ls,k (Zs,k |xk ) is the likelihood of the s
th sensor at time k.

The likelihood, derived in [9], is given by

Ls,k (Z |x ) =
µc(m− 1;λ)PD,s(x)

mV m−1

m
∑

i=1

fPS
s,k

(

z
P
i |x

)

+
µc(m;λ)(1− PD,s(x))

V m
, (5)

where x is the target state, Z =
{

zP
i

}m

i=1
is the set of data of a given

sensor at time k, V is the area of the region, µc(m;λ) is the distribu-
tion of the number of false alarms. The target originated likelihood

fPS
s,k

(

zP
i |x

)

is given by [9]

fPS
s,k

(

z
P |x

)

=







fs,k
(

zP |x
)

, if x on the port,

fs,k
(

g−1
k

(

zP
)

|x
)

, if x on the starb.

where fs,k (z |x ) is the non-ambiguous conditional pdf of the target

originated data, gk(z) = [b,−θ]T , z = [b, θ]T , and b is the bistatic
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range. Note that all the variables in Z in Eq. (5) are expressed in

Cartesian coordinates, and hence the distribution of the exact target-

originated measurement fs,k (z |x ) can be derived using the Fun-

damental Theorem of transformation of random variables [18], see

details in [9]. An approximation of the likelihood function is pro-

vided in [2], in which the small-error assumption is made allowing

the use of the first-order linearization expression.

Note that the detection probability PD,s(x) in Eq. (5) is depen-
dent on the target location, and is given in the following section.

4. ACOUSTIC MODEL FOR BISTATIC SNR AND

DETECTION PROBABILITY

The acoustic model of SNR used here is based on the work of Har-

rison [10–12, 19, 20]. For ease of notation, here we skip the de-

pendency on the time and sensor index. A closed-form solution ex-

ists when the bathymetry is range dependent but the sound speed

is isovelocity. The bottom reflection coefficient R as a function of

grazing angle θ is approximated as R = exp(−α θ), where α is a

constant. Assuming the data are reverberation-limited, the bistatic

signal to reverberation ratio (SRR) is given by

IST (φ, t)

IR(φ, t)
=

4πα2STHeff,sHeff,r

H2
sH2

r (1− exp(−Asrs))(1− exp(−Arrr))

·
(c t− L cosφ)2

µδφ
√

[(c t)2 + L2 − 2Lc t cosφ] [(ct)2 − L2]

where φ is the angle at the receiver between the source and the point

of interest xp, t is the time, rs = ‖xp − s‖, rr = ‖xp − p‖ are
the ranges to the source s and receiver p from xp, L = ‖p− s‖
is the distance between the source and receiver, and c is the range
independent sound speed. The δφ term is the beamwidth of the array,

which is in general a function of the steering angle, and the termsAs

and Ar are defined as

As =
α θ2c H

2
c,s Heff,s

2H2
scat H

2
s

, Ar =
α θ2c H

2
c,r Heff,r

2H2
scat H

2
r

, (6)

where θc is the critical angle of the water-sediment interface. The
terms

Heff,s(r) = (H2
s H2

scat/r)

∫ r

0

dr′

H3(r′)
, (7)

Heff,r(r) = (H2
r H2

scat/r)

∫ r

0

dr′

H3(r′)
, (8)

are the “effective” water depths for the source and receiver, andHc,s

andHc,r are the “critical” depths for the source and receiver, mean-

ing the depth where the steepest rays are incident above the critical

angle. TheHs,r are the water depths at the source and receiver loca-

tions, andHscat is the water depth at the point of interest. The func-

tionH(r) is the water depth profile along a given path. In this work,
we assume the bottom scattering follows Lambert’s law [11, 19].

The target strength ST is assumed to be constant in this work,

but can be a function of target aspect angle in more complex mod-

els. If the sound speed is range- and/or depth-dependent, a numerical

model such as ARTEMIS or BELLHOP can be used. The SNR can

be converted to the probabilities of detection and false alarm assum-

ing the envelope of the acoustic data is Rayleigh distributed. The

PD corresponding to a desired PFA for a signal with SNRdB(x)
(which takes into account the reverberation and the ambient noise)

depending on the target state x

PD(x) = exp

(

log(PFA)

10SNRdB(x)/10

)

(9)

5. EXPERIMENTAL RESULT USING EXPOMA12

The ExPOMA12 exercise was held in the Mediterranean Sea off the

coast of Sicily, Italy during February-March 2012. The setup of the

experiment is given in Fig. 2, where we depict the location of the

source DEMUS (yellow diamond), position of AUVs, Harpo (blue

circle) andGroucho (green circle) with related headings (arrow), and

the trajectory of the target (black dashed line). An echo-repeater

(ER) towed by the NRV is used in the experiment as a reproducible

and controllable target.

The DEMUS is located at (12.3 km, 23.2 km). The target sails
from the location (16.5 km, 16.9 km) to (17.2 km, 9.8 km) and then
goes to (15.8 km, 11.3 km). The AUVs sail south-east of the source
position and the target trajectory. The duration of the experiment

is approximately 2 hours. Further details about the experiment are

available in [9].

A key element of this procedure is that the SNR, and conse-

quently the detection probability, at each AUV depends on the ge-

ometry of the bistatic system and on the environment, e.g. multipath

time spread, reverberation, bathymetry, sound speed, etc. The de-

tection probability is calculated according to the equations in Sec. 4

using a target strength of 15 dB.

The detections of each AUV are combined to estimate the target

state distribution, defined in Sec. 3, by using a multi-sensor parti-

cle filtering strategy. Additional details related to the particle filter

implementation can be found in [9].

In Fig. 2, we report the behaviour of the particle filter using de-

tection probabilities that are not constant over the surveillance re-

gion. Figure 2 (right) shows the so-called blanking region between

the AUV and the source and also the degradation of the detection

probability (< 0.3) near the edges of the surveillance region. How-
ever, note that the target is mostly moving in the region where the

detection probability is large (≈ 0.7− 0.9).
Using the proposed procedure we are able to correctly estimate

the target trajectory and to reject ghost and false contacts.

6. CONCLUSIONS

A method of data fusion and Bayesian target tracking has been pre-

sented for a network of multiple AUVs. The port-starboard ambigu-

ity problem, present on horizontal line arrays, is addressed. We take

into account the hypothesized probability of detection as a function

of target position. The latter is itself a function of the bistatic geom-

etry and environmental parameters of the acoustic waveguide, taking

into account all available environmental information. The methodol-

ogy is optimal provided there is exactly one target in the surveillance

region. Future work will extend this method to allow the possibil-

ity of zero or multiple targets, as well as use the Bayesian posterior

distribution to influence AUV navigation decisions [21].
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(a) k=50

(b) k=100

Fig. 2. Sea trials ExPOMA12. Behaviour of the PF algorithm, using the ExPOMA12 data set, with the detection probability at Harpo and

Groucho given by the acoustic model. Time scan k = 50 and k = 100. Right-side detection probability map for Harpo and Groucho at
time scan k, Groucho and Harpo positions (white square ’�’), source position (white diamond ’♦’). Left-side we report the target trajectory
(dashed black line), current target position (’x’), estimated track at time k (red line ’-x’), Harpo contacts at time k (blue dots), Groucho

contacts at time k (green dots), Harpo position at time k (blue square ’�’), Groucho position at time k (green square ’�’), source position

(yellow diamond ’♦’).
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