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ABSTRACT

An adaptive waveform scheduling algorithm is presented for
target tracking by a multistatic radar system with two key
components: (i) a distributed multistatic tracking algorithm
for target tracking in cluttered environments, and (ii) the next
transmitted waveform selected to minimize the tracking mean
squared error. The scheduling algorithm is developed based
on the minimization of the trace of the expected tracking
error covariance matrix. A simulation example is presented
to demonstrate the superiority of the proposed waveform
scheduling algorithm over conventional fixed waveforms.

Index Terms— adaptive waveform scheduling, multi-
static radar, tracking, clutter, probabilistic data association

1. INTRODUCTION

In target tracking applications, the tracking performance can
be significantly improved by dynamically changing the trans-
mitted waveform to cope with changes in the target-radar ge-
ometry and the surrounding environment [1–5]. Extensive re-
search has been conducted in adaptive waveform selection
for monostatic radars. Early work in this area considered
an one-dimensional target tracking problem [1, 2]. Further
studies were conducted for target tracking in two-dimensional
space for different scenarios of single/multiple targets, nar-
rowband/wibeband environments, or clutter-free/cluttered en-
vironments in [3–5].

In contrast, adaptive waveform selection for target track-
ing by multistatic radars has received far less research at-
tention. Multistatic radars with multiple transmitters and re-
ceivers are well-known for their performance advantage over
monostatic radars [6]. Different to monostatic radars, the
multistatic radar performance depends not only on transmit-
ted waveform but also on radar geometry [7]. In a previous
work [8], we have shown that the tracking performance of nar-
rowband multistatic radars in clutter-free environments can be
significantly improved by adaptive waveform selection.

In this paper, we extend our previous work to a more re-
alistic scenario in which the probability of target detection
is less than unity and clutter introduces unwanted false mea-
surements at the receivers. A distributed multistatic tracking

system incorporating local probabilistic data association - ex-
tended Kalman filters (PDA-EKF) is employed for tracking a
single target in clutter. The adaptive waveform scheduling al-
gorithm is developed to minimize the tracking mean squared
error. This is achieved by selecting the next transmitted wave-
form parameters to minimize the trace of the expected track-
ing error covariance matrix. The expected tracking error co-
variance is computed using the measurement error covariance
which is assumed to achieve the Cramér-Rao lower bound
(CRLB) as commonly done in waveform selection literature.
Note that the bistatic CRLB of the receiver-to-target range
and bisector velocity has been derived in [9–11]. However,
in the context of target tracking, the optimization criterion
aims to minimize the error covariance of the tracking esti-
mate (i.e. the estimates of target position and velocity) which
can be readily computed from the bistatic CRLB of time de-
lay and Doppler shift measurements. Therefore, in this pa-
per we employ the bistatic CRLB of time delay and Doppler
shift. The performance of the proposed waveform scheduling
algorithm is compared with conventional fixed waveforms by
Monte Carlo simulations.

2. MULTISTATIC RADAR SYSTEM

An active narrowband multistatic radar system with a dedi-
cated transmitter and multiple receivers are considered, where
each receiver incorporates a local PDA-EKF tracker and the
transmitter incorporates a central processor which is responsi-
ble for combining local tracks and selecting the next transmit-
ted waveform. At each receiver, measurements of time delay
and Doppler shift are available and used by its local PDA-
EKF filter to obtain a local track. The local tracks from all
receivers are then sent to the transmitter for track combina-
tion and waveform selection. Communication links between
the transmitter and receivers are assumed to be available with
negligible time-synchronization errors.

3. BISTATIC NARROWBAND SIGNAL MODEL

In this paper, we restrict our study to narrowband environ-
ments. The standard model for monostatic narrowband sig-
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nals [12] was extended to the case of bistatic radar [13], where
the transmitted and received signals are given by

s(t) =
√

2Re[
√
Ets̃(t)e

j2πfct] (1a)

r(t) =
√

2Re[(
√
Er s̃(t− τ)ej2πυt + ñ(t))ej2πfct] (1b)

where s̃(t) is the complex envelope of the transmitted signal,
fc is the carrier frequency, ñ(t) is the baseband additive noise,
τ is the total time delay, and υ is the Doppler shift. The total
time delay and Doppler shift are given by [13–15]

τ = R/c and υ = fcṘ/c (2)

where R = RT + RR is the total range (RT is the target-
transmitter range and RR is the target-receiver range), and c
is the speed of light.

4. TARGET TRACKING IN CLUTTER

4.1. Target dynamic model

In this paper, we consider a two-dimensional tracking sce-
nario, where xk = [xk, yk, ẋk, ẏk]T denotes the target state
vector at time k = 0, 1, . . . with [xk, yk] corresponding to
the target position and [ẋk, ẏk] corresponding to the target ve-
locity. The target is assumed to move with a nearly constant
velocity, which is modelled by

xk+1 = Fxk + wk (3)

where wk is the process noise corresponding to the target ma-
neuver, and F is the state transition matrix [16].

4.2. Measurement model

At time k, each receiver obtains the measurements of time
delay and Doppler shift (denoted as τ ik and υik, respectively, at
the i-th receiver). The measurement model at the i-th receiver
is given by

zik =

[
τ ik
υik

]
= hi(xk) + nik =

[
hiτ (xk)

hiυ(xk)

]
+

[
niτ k
niυk

]
(4)

where nik is a white Gaussian noise which models the mea-
surement error. Without loss of generality, we assume that
the transmitter is located at the origin [0, 0] and the i-th re-
ceiver is located at [xiRx, y

i
Rx]. Using (2), we can obtain the

nonlinear transformations in (4) as follows:

hiτ (xk) =
‖[xk, yk]‖+ ‖[xk, yk]− [xiRx, y

i
Rx]‖

c
(5a)

hiυ(xk) =
fc
c

(
ẋkxk + ẏkyk
‖[xk, yk]‖

+
ẋk(xk − xiRx) + ẏk(yk − yiRx)

‖[xk, yk]− [xiRx, y
i
Rx]‖

)
(5b)

4.3. Measurement error

In this paper, we assume that the measurement errors nik
achieve their CRLB, hence the measurement error covari-
ance Nik is assumed to be equal to the CRLB Ci(τ,υ)k of the
measurements of time delay τ ik and Doppler shift υik at the
i-th receiver at time k. The CRLB for the measurements
of time delay and Doppler shift was derived for monostatic
radar in [12] and can be evaluated from the ambiguity func-
tion (AF) for a given waveform. The CRLB depends, among
other things, on the transmitted waveform parameters [1, 12].
Since the bistatic ambiguity function with respect to time
delay and Doppler shift remains the same as the correspond-
ing monostatic ambiguity function [13], the CRLB for the
measurements of time delay and Doppler shift derived in [12]
can be used for the bistatic case. As a result, Ci(τ,υ)k(Ω),
hence Nik(Ω), is a function of the waveform parameters Ω.
For a particular case of the Gaussian linear frequency mod-
ulated waveform class (Gaussian LFM) [4, 12], the CRLB
Ci(τ,υ)k(Ω) at the i-th receiver is given by [8]

Ci
(τ,υ)k =

1

SNRik

[
2λ2 −4bλ2

−4bλ2 1
2π2λ2 + 8b2λ2

]
(6)

where SNRik is the signal-to-noise ratio at the i-th receiver
at time k, λ is the Gaussian pulse length parameter, b =
∆F /(2Ts) is the FM rate. Here ∆F is the frequency sweep
and Ts ≈ 7.4388λ [1] is the effective pulse length.

As noted in [13], the bistatic AF with respect to time de-
lay and Doppler shift does not enable the direct evaluation
of bistatic radar performance. Therefore, we do not use the
CRLB of time delay and Doppler shift in the proposed wave-
form selection algorithm. However, it is still utilized to com-
pute the tracking error covariance of the target state estimate
(i.e. the target position [xk, yk] and target velocity [ẋk, ẏk])
which is subsequently employed for evaluating the radar per-
formance and selecting the appropriate transmitted waveform
(see Section 5).

4.4. Clutter model

At time k, the measurements at each receiver consist of un-
wanted false measurements caused by clutter and the cor-
rect measurement (if it is detected). At the i-th receiver, the
measurements are given by Zik = [zik(1), z

i
k(2), . . . , z

i
k(mi

k)
],

where mi
k is the number of measurements available at time k.

We assume that the false measurements are uniformly
spatially distributed in the measurement space and indepen-
dently across time; and the number of false measurements
follow a Poisson distribution, where the probability mass
function of the number of false measurements in the volume
V is given by [17]

µ(m) = e−ρV
(ρV )m

m!
(7)
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Fig. 1. Considered distributed tracking systems.

where ρ is the clutter density.
Furthermore, the probability of target detection of mono-

static radar is Pd = P
1/(1+SNR)
f [3,18], where Pf is the prob-

ability of false alarm and SNR is the signal-to-noise ratio at
the receiver. Since the bistatic ambiguity function with re-
spect to time delay and Doppler shift remains the same as the
monostatic ambiguity function [13], the probability of target
detection at the i-th receiver at time k is given by

P idk = P
1/(1+SNRi

k)
f . (8)

Note that SNRik is dependent on the bistatic geometry and
changes with time because of target motion.

4.5. Tracking algorithm

We consider a distributed tracking system as shown in Fig. 1,
where at each receiver the measurements comprising the false
measurements as well as the correct target-originated mea-
surement are processed by a local probabilistic data associ-
ation - extended Kalman filter (PDA-EKF) to obtain a local
track. The local tracks from all receivers are sent to a central
processor at the transmitter site for track combination.

Details of the PDA-EKF algorithm can be found in [16,
17]. The main idea of the PDA algorithm is that all validated
measurements (those that fall inside the validation region) are
considered as target-originated measurements with associa-
tion probabilities and are used for updating the target state
and tracking error covariance [16], while EKF can deal with
the nonlinearity in the measurement model based on the first
order Taylor series expansion [17].

In this paper, a simple approach of weighted linear com-
bination of tracks [19] is employed (x̂k|k =

∑
wix̂ik|k

and Pk|k =
∑
wiPik|k), where we choose the weight-

ing coefficient corresponding to the i-th track as wi =
det(Pik|k)−1/

∑
(det(Plk|k)−1) so that a track with a larger

tracking error contributes less to the overall combined track.
Note that, since our main focus is on adaptive waveform
selection, this paper only employs a simple track-to-track
fusion approach of weighted averaging where the correlation
between tracks is not considered.

5. ADAPTIVE WAVEFORM SELECTION

We now present our adaptive waveform scheduling algorithm
to minimize the overall tracking mean squared error (MSE) in
both target position and velocity. This MSE is the trace of the
tracking error covariance matrix [2]. Therefore, to optimize
the tracking performance, we can select the next transmitted
waveform at time k + 1 (characterized by the waveform pa-
rameters Ωk+1) to minimize Tr(Pk+1|k+1). Thus,

Ω∗k+1 = arg min
Ωk+1∈Waveform-Library

Tr(Pk+1|k+1(Ωk+1)) (9)

Note that, similar to [1–5,8], in our problem Pk+1|k+1(Ωk+1)
is also a function of the waveform parameter Ωk+1.

However, due to the false measurements caused by clut-
ter, Pk+1|k+1(Ωk+1) cannot be computed prior to time
k + 1 [2, 20, 21]. Therefore, instead of Pk+1|k+1(Ωk+1), we
employ the expected value of the tracking error covariance
Pk+1|k+1(Ωk+1) as proposed in [21] which can be predicted

prior to time k + 1 . For each receiver, Pik+1|k+1(Ωk+1) can
be computed as follows [21]

Pik+1|k+1(Ωk+1) = Pik+1|k − qi2k+1
Oi
k+1(Ωk+1) (10)

where

Oi
k+1(Ωk+1) = Ki

k+1(Ωk+1)Sik+1(Ωk+1)KiT
k+1(Ωk+1)

Ki
k+1(Ωk+1) = Pik+1|kHiT

k+1Sik+1(Ωk+1)−1

Sik+1(Ωk+1) = Hi
k+1Pik+1|kHiT

k+1 + Nik+1(Ωk+1)

where Hi
k+1 is the Jacobian maxtrix of hi(xk+1) [16] and

Nik+1(Ωk+1) is the measurement error covariance which is
assumed to be equal to the CRLB. The overall expected co-
variance is Pk+1|k+1(Ωk+1) =

∑
wiP

i
k+1|k+1(Ωk+1).

The scalar degradation factor qi2k+1
in (10) is dependent

on the clutter density ρ, the detection probability P idk+1
,

the validation gate volume V ik+1, and can be evaluated us-
ing Monte-Carlo integration [2, 20]. For a two-dimensional
measurement and a 4-sigma validation gate, qi2k+1

can be
approximated by [20]

qi2k+1
∼=

0.997P idk+1

1 + 0.37(P idk+1
)−1.57ρV ik+1

(12)

In this paper the optimal waveform Ω∗k+1 in (9) is ob-
tained by a finite grid search over available waveforms in a
waveform library. For a large number of waveform candi-
dates, the grid search is computational expensive, and hence a
closed-form/approximate solution is required. However, this
is out of scope of the current paper and will be investigated in
our future work.
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Fig. 2. Comparison of averaged-RMSEs of the proposed adaptive waveform scheduling and fixed waveforms with clutter
densities: (a) ρ = 1 and (b) ρ = 30.

6. SIMULATION EXAMPLE

In this section, we simulate a specific tracking scenario with
a transmitter located at the origin [0, 0] m and four receivers
located at [20000, 0] m, [10000, 15000] m, [10000,−5000] m,
and [0, 10000] m. The initial position and velocity of the tar-
get are [25000, 6000] m and [−400,−200] m/s, respectively.
The constant associated with the target maneuver [16] is q =
10. The carrier frequency is 12.5 GHz, and the pulse repeti-
tion interval is 200 ms. A Gaussian LFM waveform library
is used with the parameters:λ ∈ {10, 28, 46, 64, 82, 100} µs
and ∆F ∈ {0.1, 0.28, 0.46, 0.82, 1} MHz. The SNR at each
receiver is modeled by SNRik = R4

0/(R
2
TkR

i2
Rk), whereR0 =

50000 m. The probability of false alarm is Pf = 0.01 and a
4-sigma validation gate is used in the simulation. For each
simulation run, a single track was initialized by a initial target
state vector randomly generated from a normal distribution
around the true target state vector as in [2, 3, 22] with the co-
variance of P0|0 = diag[(100

√
10)2, (100

√
10)2, 102, 102].

A track is classified as lost if the correct measurement falls
outside the validation gate for more than 4 consecutive time
steps [2, 3, 22]. To evaluate the tracking performance, the
averaged root mean squared error (averaged-RMSE) is com-
puted from 500 converged tracks, where this average-RMSE
includes errors in both target position and velocity.

Fig. 2 shows the comparison of the averaged-RMSE cor-
responding to the proposed adaptive waveform and the fixed
waveforms with minimum and maximum time-bandwidth
products (BTmin and BTmax) for two clutter densities ρ = 1
and ρ = 30 false alarms per unit gate volume. We can see
in Fig. 2a that the proposed adaptive waveform significantly
reduces the tracking MSE compared to the fixed BTmin and
BTmax waveforms for ρ = 1. The same observation is ob-
tained for ρ = 30 in Fig. 2b, but the tracking performance of
all waveforms are worse than the tracking performance of the
corresponding waveforms in the case of ρ = 1 due to a higher
clutter density (ρ = 30). Fig. 3 illustrates a pattern of the
selected waveform parameters for a simulation run (ρ = 30).

Fig. 3. Selected waveform parameters (ρ = 30).

We also observe that, in obtaining 500 converged tracks,
the proposed algorithm causes 2 track losses compared to 2
track losses for the BTmin waveform and 17 track losses for
the BTmax waveform for ρ = 30. For the lower clutter den-
sity ρ = 1, the numbers of track losses are 2, 0, and 9 for
the proposed algorithm, the BTmin waveform, and the BTmax

waveform, respectively. We can see that the proposed algo-
rithm causes a much smaller number of track losses than the
worse case of the fixed waveforms for the simulated tracking
scenario.

7. CONCLUSION

In this paper we have investigated the problem of adaptive
waveform selection for target tracking by multistatic radar in
the presence of clutter, where a distributed multistatic track-
ing system incorporating PDA-EKF was employed for target
tracking. The proposed adaptive waveform scheduling algo-
rithm aims to minimize the tracking mean squared error via
minimizing the trace of the expected tracking error covari-
ance. The capability of the proposed algorithm to achieve a
significant reduction in the tracking mean squared error was
demonstrated with a simulation example.
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