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ABSTRACT

Clarification dialogs can help address ASR errors in speech-to-
speech translation systems and other interactive applications. We
propose to use variants of Levenshtein alignment for merging an er-
rorful utterance with a targeted rephrase of an error segment. ASR
errors that might harm the alignment are addressed through phonetic
matching, and a word embedding distance is used to account for the
use of synonyms outside targeted segments. These features lead to
a relative improvement of 30% of word error rate on sentences with
ASR errors compared to not performing the clarification. Twice as
many utterances are completely corrected compared to using basic
word alignment. Furthermore, we generate a set of potential merges
and train a neural network on crowd-sourced rephrases in order to
select the best merger, leading to 24% more instances completely
corrected. The system is deployed in the framework of the BOLT
project.

Index Terms— Error correction, Dialog systems, ASR error de-
tection, Reranking, Levenshtein alignment

1. INTRODUCTION

Automatic Speech Recognition systems often generate imperfect
transcripts mainly due to challenging acoustic conditions, out-of-
vocabulary words or language ambiguities that could only be han-
dled with world knowledge and long term context analysis. Even
though there has been a large body of work on robust ASR [1, 2], ad-
vances in open-vocabulary speech recognition [3, 4] and long-range
language modeling [5, 6, 7], ASR systems still make errors which
can impact downstream applications. Interactive systems offer an
opportunity for ASR errors to be detected and corrected through
clarification dialogs. In closed-domain dialog systems, methods
have been developed for explicit and implicit confirmation of user
intent [8, 9], but they cannot be applied to open-domain speech
because of lack of prior on the message to be understood.

Nevertheless, recent efforts in confidence measure estima-
tion [10, 11], OOV detection [12, 13, 14], error detection [15] and
error characterization in term syntactic and semantic classes [16, 17]
enable to accurately locate error segments in an ASR transcripts
and engage clarification dialogs in order to improve the system’s
understanding of what the user meant. Such clarification systems
can ask the user to disambiguate homophones or word senses, spell
out-of-vocabulary words, or rephrase part of her original utterance
in order to correct detected errors [18, 19]. These strategies focus
on targeted errors instead of asking to rephrase the whole sentence,
mimicking how humans correct understanding errors, and therefore
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leading to more natural and intuitive interactions. In particular, re-
peated clarification of all errors in a sentence can lead to a perfect
transcript in much shorter time.

In this paper, we address the problem of editing the user’s orig-
inal utterance with the answer to a clarification question partially
rephrasing the original. The paper is a follow up work to that of [16]
which explored error detection and recovery for a speech-to-speech
interactive translation system. Our contributions are the following:

• We propose Levenshtein alignment variants for merging an
original and clarification utterances given an error segment,
with cost functions tailored to the specifics of the task and
accounting for ASR errors and paraphrasing through phonetic
and word embedding similarity.

• We then rerank merging variants with a Multi-Layer Percep-
tron trained on crowd-sourced examples, using various fea-
tures such as probabilities from a Recurrent Neural Network
Language Model and agreement between mergers.

• The resulting systems are evaluated on a challenging dataset
collected for the BOLT project in which all utterances have at
least one ASR error.

The paper is organized as follows: Section 2 lists related work;
Section 3 presents task specifics; the mergers are described in Sec-
tion 4 and the reranker in Section 5. Results are discussed in Sec-
tion 6 and Section 7 concludes the paper.

2. RELATED WORK

The task of improving automatic transcripts with interactions has
mainly been pursued through confirmation in dialog systems and
edition commands in multimodal systems (“replace word...“).

There is a large body of work on confirming user input in di-
alog systems [8]. The most simple way to do it is to resynthesize
the transcript and ask the user to confirm it or utter a replacement.
While generic, this approach is very tedious on longer utterances.
Slot-based SLU systems rely on slot confidence in order to only ask
confirmation on specific slot values [20]. In addition, systems with
strong semantic modeling can assess the coherence of their belief of
user inputs in order to target specific values [21]. But the seman-
tic approach cannot be followed in the framework of open-domain
dialogs. In that case, task specifics are accounted-for to determine
which words to confirm, such as the metrics proposed in [22] for
information retrieval. In speech-to-speech translation applications,
generic clarification should focus on editing the transcript (or the
machine translation output) so that it fits the user’s intent.

When multimodal interactions are possible, cross-modal cues
have been used to generically improve transcripts. For instance, dic-
tation systems such as Dragon Naturally Speaking allow the user to
see mistakes in the displayed transcript and correct them with voice
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commands such as “select”, “correct”, “spell that”. Additionally, in
order to make the correction more efficient, a list of alternatives can
be extracted from word confusion networks to make the selection
easier [23, 24, 25]. In [26], eye gaze was used to select incorrect
words in a displayed transcript. In our work, we are interested in
situation where speech is the only modality used to interact with the
system, and therefore those options do not apply.

In the natural language processing community, there has also
been work in sentence fusion, the generation of text from multiple
textual sources, which is of interest to our work. Sentence fusion
was mainly developed for multidocument summarization in order to
obtain shorter versions of sentences with overlapping content. This
task is achieved by merging parse trees [27, 28] using an edit dis-
tance which can be learned from manual edits [29]. Parsing erro-
neous ASR output is very challenging, especially when processing
partial sentences, but we retain the idea that alignment can be useful
for merging sentences.

3. TASK

The task studied in this paper consists in generating a better intended
user utterance transcript given an errorful original sentence and the
answer to a clarification question geared towards an error segment
relative to the original. We call that task utterance merging. Words
inside the error segment are considered wrong and have to be re-
placed by words from the clarification answer. Furthermore, there
might be errors outside of the clarified segment which could also be
repaired by the answer. An example of clarification dialog would
run as follows:

Original speech Where is the hyperbaric chamber?
ASR where is that hyper bar ick chamber
Detected error hyper bar ick
Question Can you rephrase AUDIO(hyperbaric)?
Answer the high pressure chamber
Edited utterance where is the high pressure chamber

From that example, the input of a merging system would be original:
“where is that 〈err〉 chamber”, answer: “the high pressure cham-
ber” and the reference output would be “where is the high pressure
chamber”.

We have built systems performing the utterance merging task in
the context of live speech-to-speech translation systems in the con-
text of the BOLT project. A study of system logs revealed that users
generally adopt the following behavior (see [16]):

• The clarification answer exactly fits the error segment.

• The answer contains additional words to contextualize the
editing operation

• The answer is a complete rephrase and should be used in
place of the original.

• The answer does not fit the syntactic context of the original
(“the 〈err〉 chamber”⇒ “the chamber for oxygen therapy”)

• Words from the original can be rephrased for conciseness (i.e.
use a pronoun in place of a noun phrase)

• Convenience phrases are used to introduce the answer (“I
said that . . . ”)

The following sections present an approach for performing utter-
ance merging tailored to account for the user behaviors listed here.

4. SYSTEM

Generally, given a targeted clarification question, the user utters
words which fit the error segment and additional words to contex-
tualize the edit, up to the whole utterance. Therefore, our system is
designed around the idea of aligning answer words with the original
and replace the error segment with words which would fit at that
location. Unfortunately, this strategy is not always successful at
generating an acceptable transcript, so we devise a range of variants
and train a reranker in order to select the best variant.

Our first two systems are baselines: replace all the words from
the original with that of the clarification utterance, or as an alterna-
tive, insert all words from the clarification utterance in place of the
error segment. Then all other systems are variants of Levenshtein
alignment applied in the framework of finite state transducers. In
this framework, utterances are represented as linear acceptors which
recognize the sequence of uttered words. In the original utterance
acceptor, the error segment is replaced by a sub automaton recogniz-
ing a sequence of one or more 〈err〉 tokens which will be matched
with repair words (error loop). The alignment is performed by com-
posing these acceptors with an edit transducer which maps words to
edit operations: insertions, deletions and substitutions. If Ao and
Ac are acceptors which represent the original and clarification utter-
ances, and Te is the transducer encoding the edit operations, the best
path of the composition Ao ◦ Te ◦ Ac yields an alignment between
the utterances. Figure 1 depicts the structure of those automata. Per-
forming the alignment in the transducer framework makes it easier to
implement task-specific constraints and can be extended to word lat-
tices instead of sequences. The final merged utterance is obtained by
outputting words from the alignment, using those of the clarification
when different from the original.

An affine gap cost function is used to score the edit opera-
tions [30]. The cost of a sequence of insertions/deletions is split in
two components: α for starting a segment of edits, and β to continue
it (see Figure 1). This kind of alignment cost is expected to group
misalignments together and result in more compact matches. More-
over, the cost of substituting a word to a 〈err〉 token is 0, so that
clarification words are placed in priority in the error segment. The
cost of a substitution, γ, is computed by comparing the two words
to be substituted with the following features:

• Wordnet similarity: γ = 0.5 if the two words to align share a
synset in Wordnet, otherwise γ = 1.

• Word embedding similarity: γ is the cosine similarity be-
tween vector representations of the substituted words in
a 300-dimensional embedding. This embedding has been
trained on words from the TRANSTAC in-domain corpus,
taking the hidden layer of a neural network predicting each
word given its context [31].

• Phonetic similarity: γ is the minimum edit distance between
word phonetization variants from the CMU pronouncing dic-
tionary [32].

The mergers used in our work are devised from various combi-
nations of these costs, resulting in different merging properties and
accuracy.

5. RERANKER

The reranker aims at selecting from a set of merge hypotheses the
one which will generate the best transcript according to the user in-
tent. The problem is cast as binary classification: given a set of fea-
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Fig. 1. Affine gap alignment with transducers. The top acceptor Ao

is the original sentence with an error loop at the error segment; the
bottom acceptor Ac is the clarification answer; the middle transduc-
ers Te is a template for the edit transducer (for instance, each word
w can be substituted by another word w′). The edited utterance is
obtained from the best path of the composition Ao ◦ Te ◦ Ac. α is
the cost for starting an insertion/deletion segment, β is the cost for
continuing it and γ is the substitution cost.

tures characterizing the output of one of the mergers, is this output
the human-written reference merge or not?

We extract 14 features to represent the output of a merger. A
first set of features is directly related to the merger being evaluated:
• Merger identity
• Cosine similarity with original, with clarification
• Min, max and mean word-level score given by a Recurrent

Neural Network language model (RNN)
• Merged sentence length
In addition, another set of features is devoted to modeling the

edit operation:
• Number of other mergers agreeing on merged sentence
• Levenshtein distance with original, clarification
• Length difference with original, clarification
• The sentence is included in the original, in the clarification
The reranker is a Multi-Layer Perceptron (MLP) with 6 lay-

ers (1 input layer, 4 hidden layers and 1 output layer), trained with
the backpropagation algorithm. The input, hidden and output lay-
ers are composed respectively of 14, 10 and 1 neurons. In training,
the output neuron is set to +1 if the merge hypothesis corresponds
to the reference and to −1 otherwise. We use a large set of clar-
ification dialogs with reference obtained from crowd sourcing (de-
scribed in Section 6) as training corpus and the RNN is trained on
the TRANSTAC in-domain corpus. Finally, given a set of merger hy-
potheses, the selected merger is the one that gets the highest score1

given by output neuron.
1For the MLP we use FANN (http://leenissen.dk/fann/wp) and for the

RNN we use RNNLM (http://www.fit.vutbr.cz/ imikolov/rnnlm).

6. EXPERIMENTS AND RESULTS

The approach developed in this paper is tested in the framework of
BOLT Task b/c, machine-mediated human-human bilingual conver-
sation. The system plays the role of an interpreter who can take the
initiative to clarify user input before translating it. An ASR and MT
error detector is run upfront to generate error segments about which
the dialog module asks for a targeted rephrase. The merger processes
the answers to clarification questions to produce a better transcript
before translation. In the following, we only look at the English side
even though both languages are processed the same way.

In order to assess the quality of our system, we produced two
corpora: a text corpus of targeted rephrases collected through Ama-
zon Mechanical Turk (AMT), mainly used for training, and speech
recordings reproducing the kind of clarification dialogs in BOLT.
The first corpus is a set of 900 in-domain targeted rephrases for
which we asked turkers to rephrase a random part of a sentence (3
turkers× 3 random segments× 100 input sentences). The dataset is
then upsampled by randomly extending the error segments and clar-
ification boundaries to obtain 11,775 unique instances. The speech
corpus is a set of 70 dialogs for which the original utterance con-
tains at least one ASR error segment (the targeted error) and might
contain additional errors. This corpus is very challenging for ASR
because most errors are induced by OOVs. ASR transcripts were
obtained by running a DNN-based ASR systems developed by SRI
in the course of the BOLT project. Its word error rate is 30.60 on the
original utterances and 14.7 on the clarification answers. Note that in
all experiments, we consider that targeted error segments have been
correctly located by the error detection module. In the following, we
call AMT the corpus collected though crowd sourcing and Speech the
corpus of speech recordings.

In the experiments, the following mergers are compared: replace
and insert baselines, basic Levenshtein alignment without an error
loop (Align no-err-loop), alignment with an error loop (Err-loop),
alignment with affine-gap costs and an error loop (Err loop + affine
gap; α = β = γ = 1), the same with phoneme sequences in place
of words (Phonemes only), affine-gap and error loop with γ the pho-
netic similarity between words (Phonetic + words), the same with
γ the minimum between the Wordnet similarity and the phonetic
similarity (Phonetic + Wordnet), and γ the minimum between the
embedding similarity and the phonetic similarity (Phonetic + em-
bedding).

Merging performance is evaluated with two metrics: merging
accuracy represents the rate of complete recovery compared to the
human-written reference, and merging word error rate (WER) is the
word error rate of the hypothesis compared to the reference merge
that should have been produced (it is not the WER compared to the
original reference transcript).

Table 1 shows the results for the different mergers on the AMT
dataset. All alignment-based mergers perform better than the base-
lines, leading to a large reduction in WER. The best merging strategy
is to perform affine-gap alignment with an error loop and a substi-
tution cost based on both the phonetic edit distance between words
and their Wordnet similarity, each feature of the alignment strategy
yielding an improvement. The knowledge-poor alignment (without
phonetic lexicon nor semantic representation) already performs well
with an accuracy of 75.02%. The reranker offers an additional im-
provement of 10.4% in accuracy and 31.8% in term of WER over
the best merger. Note that on this particular corpus, the method pro-
posed in [16] only beats the baselines and basic alignment.

In table 2, we report the same results for the Speech corpus for
reference text ASR output. The general behavior of mergers is the
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Method Acc. WER
Replace (baseline) 45.94 20.24
Insert (baseline) 25.41 32.56
Align no err-loop 61.84 13.00
Err loop 69.76 07.30
Err loop + affine gap 75.02 05.37
Phonemes only 51.86 10.51
Phonetic + words 77.60 04.74
Phonetic + Wordnet 80.02 03.99
Phonetic + embedding 78.70 04.42

Reranker 88.36
±0.72

02.72
±0.23

Oracle 96.18 00.56
[16] 63.70 12.44

Table 1. Merge accuracy and WER results for the mergers and
reranker on the AMT dataset. Reranker results are averaged on 100
runs. The reranker oracle is computed by systematically selecting
the best merger output in term of accuracy. For comparison pur-
poses, we also give results for the method proposed in [16].

same as on the text corpus, except that accuracy (obtaining the cor-
rect transcript of the reference merge) is much lower for ASR output.
Still, WER is greatly improved compared to using the original with-
out clarification, with a gain of about 10 points absolute. On speech,
the Wordnet semantic resource is worse at modeling substitutions
than the word embedding, probably because the continuous space
is more robust when there are ASR errors. The method proposed
in [16] yields good results on reference text but it fails to improve
over not clarifying in term of WER on ASR output, a motivational
factor for the current work. Concerning the reranker, it obtains an
accuracy close to the oracle (selecting the best system), which is fa-
vorable in term of perceived accuracy, but the WER improvement is
not as high as on AMT. This suggests that (1) more merger strategies
have to be explored to improve the oracle, and (2) the reranker should
be trained to minimize WER in addition to maximizing accuracy.

Ref. ASR
Method Acc. WER Acc. WER
Replace (baseline) 25.71 49.08 12.86 55.18
Insert (baseline) 37.14 28.09 08.57 46.52
Align no-err-loop 35.71 21.56 10.00 32.34
Err-loop 70.00 08.09 17.14 22.27
Err loop + affine gap 84.29 02.13 21.43 21.56
Phonemes only 74.29 04.68 15.71 21.56
Phonetic + words 85.71 01.84 21.43 21.13
Phonetic + Wordnet 82.86 02.70 18.57 21.28
Phonetic + embed. 85.71 01.84 21.43 20.99

Reranker 87.57
±1.36

01.93
±0.58

26.67
±0.78

20.97
±0.58

Oracle 90.00 1.42 28.57 16.17
[16] 84.29 02.27 15.71 30.64
No clarification 0.0 15.14 0.0 30.60

Table 2. Accuracy and WER results on the Speech corpus accord-
ing to merger variants, the reranker, the oracle, the results of [16]
and the result if no clarification is performed. The first two columns
correspond to the reference transcript while the other show ASR re-
sults. The reranker oracle is computed by selecting the best system
for each hypothesis.

AMT Speech
Text Ref. ASR

Classifier acc. 90.65
±1.68

90.83
±1.43

58.74
±2.00

Table 3. MLP Accuracy on AMT and Speech corpora.

In Table 3 we report classification accuracy obtained by the
reranker on the AMT and Speech corpora. AMT results are given in
a 2-fold setting (results are the average of experiments run with half
of the corpus as test set), and Speech results are given for a model
trained on the whole AMT data. Since the weights of the MLP are
randomly initialized, we report mean accuracy and standard devi-
ation over 100 runs. It can be observed that on reference text the
reranker obtains an accuracy of 90.65% and 90.83% respectively for
the AMT and Speech with reference transcript, while on automatic
transcription the accuracy falls to around 58%. This difference can
be explained by the fact that the reranker is trained on reference text
(AMT) and thus it is less robust to ASR errors.

Table 4 shows how often each merger was classified as +1 by
the reranker (output neuron > 0) on the Speech corpus, and the ratio
of correct guesses among them. Note that the number of correct is
bound by the oracle, which explains why it is lower on ASR output.
Since the reranker is trained on clean text, systems tend to be se-
lected less often on ASR output because of word errors which lower
the number of matched words between original utterances and clar-
ifications. Note that even though multiple mergers can be classified
as +1 on a given instance, we only use the argmax as output of the
reranker.

Ref. ASR
Method Sel. Acc. Sel. Acc.
Replace (baseline) 27.14 94.74 22.86 50.00
Insert (baseline) 47.14 78.79 45.71 18.75
Align no-err-loop 35.71 100.00 22.86 43.75
Err-loop 74.29 94.23 51.43 33.33
Err-loop + affine-gap 94.29 87.88 80.00 26.79
Phonemes only 80.00 89.29 58.57 24.39
Phonetic + words 92.86 89.23 77.14 27.78
Phonetic + Wordnet 87.14 91.80 70.00 26.53
Phonetic + embedding 92.86 89.23 81.43 26.32

Table 4. Mergers classified as +1 by the reranker on the Speech
corpus in percentage of instances and rate of correct among them.

7. CONCLUSION

In this paper we propose a system for addressing the problem of
merging an answer to a clarification dialog with the errorful orig-
inal utterance. We propose Levenshtein alignment variants and a
reranker to select the best hypothesis. The method results in a rela-
tive improvement of about 30% compared to not clarifying the input,
the reranker helping to completely remove the error in 26% of the in-
stances, almost reaching the oracle.

For future work, we will investigate the use of non-monotonic
alignment with methods elaborated from bitext alignment in ma-
chine translation, and make use of word lattices in the merge op-
eration.
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