2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

SINGLE-CHANNEL INDOOR MICROPHONE LOCALIZATION

Reza Parhizkar, Ivan Dokmanié¢ and Martin Vetterli

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
{reza.parhizkar, ivan.dokmanic, martin.vetterli}@epfl.ch

ABSTRACT

We propose a novel method for single-channel microphone
localization inside a known room. Unlike other approaches,
we take advantage of the room reverberation, which enables
us to use only a single fixed loudspeaker to localize the mi-
crophone. Our method uses an echo labeling approach that
associates the echoes to the correct walls. Echo labeling lever-
ages the properties of the Euclidean distance matrices formed
from the distances between the virtual sources and the micro-
phone. Experiments performed in a real lecture room verify
the effectiveness of the proposed localization algorithm.

Index Terms— Single-channel localization, microphone
calibration, indoor localization, s-stress

1. INTRODUCTION

Most audio sensor array applications rely on the precise
knowledge of the microphone positions. This motivated the
development of several approaches for localization of micro-
phones in an array. For example, in [1] the authors describe
a closed-form method for calculating the relative geometry
of multiple microphone arrays with known shapes. In [2], a
maximum-likelihood approach is used to find the positions of
microphones in an array. Multidimensional scaling is used to
solve a similar problem in [3].

The topic is also highlighted by several papers at ICASSP-
2013. An optimization approach to self-localization of ad-hoc
arrays is presented in [4]. The solution does not require syn-
chronization between the sources and the array. A characteri-
zation of cases when the solution exists is described in [5], as
well as a minimal solver.

All of the above approaches involve multiple sources and
receivers. Furthermore, the methods are independent of the
fact that the localization is performed indoors (the reverbera-
tion is even considered detrimental). We note that localizing a
single microphone inside a room is useful in its own right. Ex-
ample applications are localization of household robots, peo-
ple or smartphones, to name a few. Standard methods for mi-
crophone localization include triangulation and trilateration,
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both of which rely on multiple sources of sound (with the
known relative geometry).

In contrast to previous approaches, in this paper we pro-
pose a single-channel method for microphone localization.
Our method takes advantage of the room, by utilizing echoes
from the walls to find the microphone position. The underly-
ing assumption is that the room geometry is known, as well
as the loudspeaker location. We do not require the detailed
knowledge of the room structure—locations and orientations
of principal reflectors (typically walls) suffice.

In [6], a method is described for determining the room
geometry from acoustic echoes, using a single sound source,
and a minimum of 4 microphones. The microphone localiza-
tion method presented in this paper can be regarded as a dual
of the room geometry reconstruction algorithm. Similarly to
room reconstruction, we use echo labeling to associate echoes
recorded by the microphone to the walls that generated them.
Echo labeling is performed with the help of Euclidean dis-
tance matrices (EDM). The EDMs are used as a filter that
reveals the correct combinations of echoes. This is formal-
ized in Section 3. In Section 5 we present a real microphone
localization experiment performed in a lecture room on EPFL
campus. The results of the experiment verify the accuracy
and robustness of the proposed localization algorithm.

We note that the microphone localization problem is sim-
ilar to source localization in acoustics [7, 8]. Moreover, the
method can be applied not only using sound, but also with any
time-of-flight measuring pair of devices (ultrasound, light,
UWB) [9, 10].

2. MODELING

We consider the known room to be a K-faced polygon. We
work in three dimensions and note that the results are imme-
diately valid in 2D as a special case. As the room shape is
known, the location of wall vertices p; € R? are available.
We also assume that there is one loudspeaker with known lo-
cation s € R? inside the room. We can model the sound
propagation inside the room by the room impulse response
(RIR). An RIR describes the acoustic channel between the
source and the receiver inside the room. It depends on the
shape of the room and locations of the loudspeaker and the
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Fig. 1. Illustration of the image source model for first and
second-order echoes. Image sources are shown by stars, and
s;; is the image source corresponding to the second-order
echo.

microphone. Ideally it is a train of Diracs, each correspond-
ing to an echo:

h(t) = Zc 5(t—t;),

where c; and t; are the amplitude and time of arrival of the
ith echo. A microphone hears the convolution of the loud-
speaker signal with the RIR. We are interested in estimating
the unknown position of a microphone inside the room using
the room impulse response between the microphone and the
loudspeaker.

By measuring the room impulse response we access the
echo times ¢;. These echo times can be linked to the room ge-
ometry and microphone position with the image source model
[11, 12]. According to this model, we can replace an echo
from a wall by a virtual source behind the wall in a mirrored
location of the original source.

As illustrated in Figure 1, virtual sources are mirror im-
ages of the true sources across the corresponding reflecting
walls. The image s; of the source s with respect to the ith
wall is computed as

8; = s+ 2(p; — s,mi)ny, (D

where n; is the unit normal to the 7th wall. The time of arrival
of the echo from the ith wall is ¢; = ||§; — r||/c, where ¢ is
the speed of sound and r is the location of the microphone.
Assuming that the sound speed inside the room is fixed and
known, we can relate the time of arrival of the echoes to the
mutual distances of the microphone and the image sources.
As the geometry of the room and the position of the loud-
speaker are known, we have access to the position of the im-
age sources, s; (refer to (1)). If we were also to know the

Fig. 2. Based on the shape of the room, position of the loud-
speaker and also position of the microphone, echoes from
walls may arrive in different orders.

correspondences of the recorded echoes by the microphone
with the image sources (which echo comes from which wall)
we would be able to multilaterate the position of the micro-
phone. However, we face two problems:

e Not all the extracted echoes from the impulse response
correspond to first order image sources,

e The echoes arrive to the microphone in different orders
based on the position of the microphone.

An example with real measurements is shown in Figure 2. As
can be seen from the figure, many of the extracted peaks in the
impulse response do not correspond to a valid image source.
Thus, we are facing a labeling problem.

3. ECHO LABELING

With the echo labeling procedure we aim at first extracting the
correct echoes from the impulse response and second finding
the right assignment of these echoes to the walls. Consider
the setup shown in Figure 3. Let D € RUE+HDX(K+1) pe 5
matrix whose entries are as follows:

i=1
I5i — 5| j=1 )
I3ics — S5l 2<ij<K+1

~ 2
s = sl
Dli,j] =

where s; are the locations of the first order image sources.
As the geometry of the room and the location of the loud-
speaker are known, D is a Euclidean distance matrix (EDM)
with known entries. As the loudspeaker emits a sound, the mi-
crophone receives the direct sound (the first peak in its RIR)
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S §1 g_) §3 §4 §5 §(; _
0.00 1.00 1.44 0.64 2.56 5.76 1.00 0.12
1.00 0.00 2.44 1.64 3.56 6.76 4.00 1.52
1.44 244 0.00 4.00 4.00 7.20 244 2.01
1)aug71 —10.64 1.64 4.00 0.00 3.20 6.40 1.64 0.44
2.56 3.56 4.00 3.20 0.00 16.0 3.56 3.32
5.76 6.76 7.20 6.40 16.0 0.00 6.76 4.92

1.00 4.00 244 1.64 3.56 6.76 0.00 0.72

0.12 152 2.04 0.44 3.32 4.92 0.72 0.00

'86 S §1 S §3 §4 §5 S6

0.00 1.00 144 0.64 2.56 5.76 1.00 [L02
100 0.00 244 1.64 3.56 6.76 4.00 1.52
144 244 0.00 4.00 4.00 7.20 244 2.0
D,ygo =[064 164 400 000 320 640 1.64 0.11
256 3.56 4.00 3.20 0.00 16.0 3.56 3.32
576 6.76 7.20 6.40 16.0 0.00 6.76 [0.12
1.00 4.00 244 1.64 3.56 6.76 0.00 (.72
192] 152 2.04 044 3.32 012 0.72 0.00

Fig. 3. An example for echo labeling for microphone localization. The gray part of the matrices show the distances between the
sources. We augment this matrix with a combination of echoes extracted from the microphone RIR. If the echoes are selected
correctly and have the right order the augmented matrix is an EDM. The matrix D, ; is an EDM. But since the echoes are not

correctly ordered in D, 2, it is not an EDM.

and K first order echoes from the walls (consecutive peaks
in its RIR). We propose a novel algorithm to extract these
echoes from the RIR and label them according to their corre-
sponding wall. To this end we use a fundamental property of
EDMs: An EDM corresponding to a point set in R™ has rank
at most n + 2 [13]. Thus, in 3D its rank is at most 5. We start
by the known EDM, D and augment it as follows: We choose
(K +1) echoes from the RIR of the microphone and augment
D with them (we add an extra column and row to it). If these
echoes are correctly assigned to the image sources, then they
represent the distances of the microphone from these image
sources and the augmented matrix Dyyg is an EDM and thus
will be low rank. However, if we did not choose the correct
peaks or they do not have the right permutation, then the aug-
mented matrix will not be an EDM. For example in Figure 3,
since D,g,1 contains the correct permutation of the echoes,
itis an EDM, while D, 2 is not an EDM.

More formally, let e list the candidate distances computed
from the RIR recorded by the microphone. We proceed by

augmenting the matrix D with a combination of K unlabeled
squared distances d;, .. i) to get Dayg,

D Ay,
Daug(d(il,.‘.,iK)) = T ( 1,0 K

(4150050 K)

The column vector d;, ... i, is constructed as

d(ila--<7iK) [k] = ez[ik]v

with i, € {1,...,length(e)}. In words, we construct a can-
didate combination of echoes d by selecting K echoes out
of all extracted echoes from the microphone RIR. Note that
length(e) # K in general, meaning that we might pick more
than K echoes from the RIR of the microphone.

If rank(D,ug) < 5 or more specifically D, verifies the
EDM properties, then the selected combination of echoes is
the correct permutation.
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4. PRACTICAL ALGORITHM

Both the measurements for D and e are often noisy. Thus,
the rank test might not be enough for practical applications.
Instead, we can check how close the augmented matrix D,g
is to an EDM. We use multi-dimensional scaling (MDS) to
define such measure of closeness. Introduced originally in
psychometrics for data visualization [14], MDS tries to find
the point set in a given dimension (here three) that produces
an EDM closest to D,,s. Specifically, we use the s—stress cri-
terion [15]. For each selection of echoes that results in D,,g,

s—stress(D,,g) is the value of the following optimization pro-
gram,

minimize " (Daug[i, 5] — Daugli, j])2 . 3)

D,yg €EDM(3) 7

By EDM® we denote the set of EDMs generated by point
sets in R3. We call s—stress(D,,z) the score of the matrix

D,,,, and use it to assess the likelihood that a permutation
of echoes is correct. For optimizing (3) we use the method
proposed in [16] which in almost every case finds the global
minimum of the s—stress function.

The combination of echoes which results in the minimum
value for the s—stress score is selected as the correct permu-
tation. The algorithm is summarized as:

i. Foreveryd, .

score[d;, ... ;)]  s—stress(Dayg)

ii. Find the minimum score collected in score,

iii. Use the found echo combination and the image source
locations to compute the microphone location.

Note that although the algorithm needs to check echo
combinations and permutations, it is not necessary to test all
echo combinations. The dimensions of the room together
with the location of the loudspeaker define the size of a
window in which all the first order echoes lie.

5. EXPERIMENTS

We ran an experiment in a lecture room on EFPL cam-
pus. Two walls of the room are glass windows, and two are
gypsum-board partitions. The room is equipped with a perfo-
rated metal plate ceiling suspended below a concrete ceiling.
We replaced one wall by a wall made of tables. We used a
directional loudspeaker Genelec 8030A, and a non-matched
omni-directional microphone Behringer ECM 8000. The RIR
from the loudspeaker to the microphone was estimated by the
sine sweep technique [17]. The room dimensions are known
a-priori and the loudspeaker location was measured during the
experiment. The experimental setup with the image sources
of the loudspeaker are shown in Figure 4. As the loudspeaker

iz
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Fig. 4. Sketch of a room on EPFL campus where the in-room
localization experiment is performed. The image sources of
the loudspeaker are shown with stars. The image source of
the floor (s4) is not shown for better visualization. The actual
distance of the loudspeaker and the microphone is shown in
red while the estimated distance is in black.

is placed against the north wall, we do not consider the image
source for this wall. The matrix D—defined in (2)—is

0.00 2540 17848 591 4.66 10.38
25.40  0.00 203.90 55.40 30.07 35.77
D~ 178.48 203.90 0.00 172.38 183.15 188.86
5.91 5540 17238 0.00 10.58 16.28
4.66 30.07 183.15 10.58 0.00 28.94
10.38 35.77 188.86 16.28 28.94  0.00

We augment this matrix with 6-tuples of echoes selected
from the microphone’s RIR. For each combination we find the
value of s—stress(D,,g). The combination that results in the
minimum score is selected as the correct combination and the
microphone position is found using the estimated permutation
of the echoes. As it is shown in Figure 4 the distance of the
microphone from the loudspeaker is estimated with an error
of less than 1 cm.

6. CONCLUSION

We proposed a new method for microphone localization in-
side a known room. Our method uses Euclidean distance ma-
trices to detect the correct echo combinations. Experiments
show that our algorithm can localize the microphone in a re-
alistic scenario with the positioning error on the order of a
centimeter in a room whose sides are several meters long.

Ongoing work includes the extension of the method to
rooms with more general geometries (e.g. non-convex), per-
forming joint source-microphone localization, and the inte-
gration of the method within a comprehensive indoor local-
ization system.
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